Nothing
test_that("two class produces identical results regardless of level order", {
lst <- data_altman()
df <- lst$pathology
df_rev <- df
df_rev$pathology <- stats::relevel(df_rev$pathology, "norm")
df_rev$scan <- stats::relevel(df_rev$scan, "norm")
expect_equal(
kap_vec(df$pathology, df$scan),
kap_vec(df_rev$pathology, df_rev$scan)
)
})
test_that("kap errors with wrong `weighting`", {
lst <- data_three_class()
three_class <- lst$three_class
expect_snapshot(
error = TRUE,
kap(three_class, truth = "obs", estimate = "pred", weighting = 1)
)
expect_snapshot(
error = TRUE,
kap(three_class, truth = "obs", estimate = "pred", weighting = "not right")
)
})
test_that("works with hardhat case weights", {
lst <- data_altman()
df <- lst$pathology
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
kap_vec(df$pathology, df$scan, case_weights = imp_wgt)
)
expect_no_error(
kap_vec(df$pathology, df$scan, case_weights = freq_wgt)
)
})
test_that("work with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
fct_estimate <- two_class_example$predicted
fct_estimate[2] <- NA
expect_identical(
kap_vec(fct_truth, cp_estimate),
kap_vec(fct_truth, fct_estimate)
)
expect_identical(
kap_vec(fct_truth, cp_estimate, na_rm = FALSE),
NA_real_
)
expect_snapshot(
error = TRUE,
kap_vec(cp_truth, cp_estimate)
)
})
# ------------------------------------------------------------------------------
# expected results from e1071::classAgreement(three_class_tb)$kappa
# e1071::classAgreement(table(three_class$pred_na, three_class$obs))$kappa
test_that("Three class", {
lst <- data_three_class()
three_class <- lst$three_class
three_class_tb <- lst$three_class_tb
expect_equal(
kap(three_class, truth = "obs", estimate = "pred")[[".estimate"]],
0.05
)
expect_equal(
kap(three_class_tb)[[".estimate"]],
0.05
)
expect_equal(
kap(as.matrix(three_class_tb))[[".estimate"]],
0.05
)
expect_equal(
kap(three_class, obs, pred_na)[[".estimate"]],
-0.1570248,
tolerance = 0.000001
)
expect_equal(
colnames(kap(three_class, truth = "obs", estimate = "pred")),
c(".metric", ".estimator", ".estimate")
)
expect_equal(
kap(three_class, truth = "obs", estimate = "pred")[[".metric"]],
"kap"
)
})
# sklearn compare --------------------------------------------------------------
test_that("Two class - sklearn equivalent", {
py_res <- read_pydata("py-kap")
r_metric <- kap
expect_equal(
r_metric(two_class_example, truth, predicted)[[".estimate"]],
py_res$binary
)
})
test_that("Multi class - sklearn equivalent", {
py_res <- read_pydata("py-kap")
r_metric <- kap
expect_equal(
r_metric(hpc_cv, obs, pred)[[".estimate"]],
py_res$multiclass
)
})
test_that("linear weighting - sklearn equivalent", {
py_res <- read_pydata("py-kap")
r_metric <- kap
expect_equal(
r_metric(two_class_example, truth, predicted, weighting = "linear")[[".estimate"]],
py_res$linear_binary
)
expect_equal(
r_metric(hpc_cv, obs, pred, weighting = "linear")[[".estimate"]],
py_res$linear_multiclass
)
})
test_that("quadratic weighting - sklearn equivalent", {
py_res <- read_pydata("py-kap")
r_metric <- kap
expect_equal(
r_metric(two_class_example, truth, predicted, weighting = "quadratic")[[".estimate"]],
py_res$quadratic_binary
)
expect_equal(
r_metric(hpc_cv, obs, pred, weighting = "quadratic")[[".estimate"]],
py_res$quadratic_multiclass
)
})
test_that("Two class case weighted - sklearn equivalent", {
py_res <- read_pydata("py-kap")
r_metric <- kap
two_class_example$weights <- read_weights_two_class_example()
expect_equal(
r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]],
py_res$case_weight$binary
)
})
test_that("Multi class case weighted - sklearn equivalent", {
py_res <- read_pydata("py-kap")
r_metric <- kap
hpc_cv$weights <- read_weights_hpc_cv()
expect_equal(
r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]],
py_res$case_weight$multiclass
)
})
test_that("linear weighting case weighted - sklearn equivalent", {
py_res <- read_pydata("py-kap")
r_metric <- kap
two_class_example$weights <- read_weights_two_class_example()
hpc_cv$weights <- read_weights_hpc_cv()
expect_equal(
r_metric(two_class_example, truth, predicted, weighting = "linear", case_weights = weights)[[".estimate"]],
py_res$case_weight$linear_binary
)
expect_equal(
r_metric(hpc_cv, obs, pred, weighting = "linear", case_weights = weights)[[".estimate"]],
py_res$case_weight$linear_multiclass
)
})
test_that("quadratic weighting case weighted - sklearn equivalent", {
py_res <- read_pydata("py-kap")
r_metric <- kap
two_class_example$weights <- read_weights_two_class_example()
hpc_cv$weights <- read_weights_hpc_cv()
expect_equal(
r_metric(two_class_example, truth, predicted, weighting = "quadratic", case_weights = weights)[[".estimate"]],
py_res$case_weight$quadratic_binary
)
expect_equal(
r_metric(hpc_cv, obs, pred, weighting = "quadratic", case_weights = weights)[[".estimate"]],
py_res$case_weight$quadratic_multiclass
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.