Nothing
test_that("Two class", {
lst <- data_altman()
pathology <- lst$pathology
path_tbl <- lst$path_tbl
expect_equal(
mcc(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
((231 * 54) - (32 * 27)) / sqrt((231 + 32) * (231 + 27) * (54 + 32) * (54 + 27))
)
expect_equal(
mcc(path_tbl)[[".estimate"]],
((231 * 54) - (32 * 27)) / sqrt((231 + 32) * (231 + 27) * (54 + 32) * (54 + 27))
)
expect_equal(
mcc(pathology, truth = pathology, estimate = scan_na)[[".estimate"]],
((230 * 53) - (32 * 26)) / sqrt((230 + 32) * (230 + 26) * (53 + 32) * (53 + 26))
)
})
test_that("two class produces identical results regardless of level order", {
lst <- data_altman()
df <- lst$pathology
df_rev <- df
df_rev$pathology <- stats::relevel(df_rev$pathology, "norm")
df_rev$scan <- stats::relevel(df_rev$scan, "norm")
expect_equal(
mcc_vec(df$pathology, df$scan),
mcc_vec(df_rev$pathology, df_rev$scan)
)
})
test_that("doesn't integer overflow (#108)", {
x <- matrix(c(50122L, 50267L, 49707L, 49904L), ncol = 2L, nrow = 2L)
expect_equal(
mcc(x)[[".estimate"]],
0.00026665430738672
)
})
test_that("works with hardhat case weights", {
lst <- data_altman()
df <- lst$pathology
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
mcc_vec(df$pathology, df$scan, case_weights = imp_wgt)
)
expect_no_error(
mcc_vec(df$pathology, df$scan, case_weights = freq_wgt)
)
})
test_that("work with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
fct_estimate <- two_class_example$predicted
fct_estimate[2] <- NA
expect_identical(
mcc_vec(fct_truth, cp_estimate),
mcc_vec(fct_truth, fct_estimate)
)
expect_identical(
mcc_vec(fct_truth, cp_estimate, na_rm = FALSE),
NA_real_
)
expect_snapshot(
error = TRUE,
mcc_vec(cp_truth, cp_estimate)
)
})
# sklearn compare --------------------------------------------------------------
test_that("Two class - sklearn equivalent", {
py_res <- read_pydata("py-mcc")
r_metric <- mcc
expect_equal(
r_metric(two_class_example, truth, predicted)[[".estimate"]],
py_res$binary
)
})
test_that("Multi class - sklearn equivalent", {
py_res <- read_pydata("py-mcc")
r_metric <- mcc
expect_equal(
r_metric(hpc_cv, obs, pred)[[".estimate"]],
py_res$multiclass
)
})
test_that("Two class case weighted - sklearn equivalent", {
py_res <- read_pydata("py-mcc")
r_metric <- mcc
two_class_example$weights <- read_weights_two_class_example()
expect_equal(
r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]],
py_res$case_weight$binary
)
})
test_that("Multi class case weighted - sklearn equivalent", {
py_res <- read_pydata("py-mcc")
r_metric <- mcc
hpc_cv$weights <- read_weights_hpc_cv()
expect_equal(
r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]],
py_res$case_weight$multiclass
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.