Nothing
test_that("Two class - Powers paper", {
lst <- data_powers()
tabl_2_1 <- lst$tabl_2_1
df_2_1 <- lst$df_2_1
expect_equal(
precision(df_2_1, truth = "truth", estimate = "prediction")[[".estimate"]],
30 / 42
)
expect_equal(
precision(tabl_2_1)[[".estimate"]],
30 / 42
)
expect_equal(
precision(df_2_1, truth = truth, estimate = pred_na)[[".estimate"]],
26 / 37
)
})
test_that("`event_level = 'second'` works", {
lst <- data_altman()
df <- lst$pathology
df_rev <- df
df_rev$pathology <- stats::relevel(df_rev$pathology, "norm")
df_rev$scan <- stats::relevel(df_rev$scan, "norm")
expect_equal(
precision_vec(df$pathology, df$scan),
precision_vec(df_rev$pathology, df_rev$scan, event_level = "second")
)
})
# ------------------------------------------------------------------------------
test_that("Binary `precision()` returns `NA` with a warning when undefined (tp + fp = 0) (#98)", {
truth <- factor("a", levels = c("a", "b"))
estimate <- factor("b", levels = c("a", "b"))
expect_snapshot(
out <- precision_vec(truth, estimate)
)
expect_identical(out, NA_real_)
})
test_that("Multiclass `precision()` returns averaged value with `NA`s removed + a warning when undefined (tp + fp = 0) (#98)", {
levels <- c("a", "b", "c", "d")
# When `d` is the event we get precision = 0 = 0 / (0 + 3)
# When `a` is the event we get a warning
# When `b` is the event we get a warning
# When `c` is the event we get a warning
truth <- factor(c("a", "b", "c"), levels = levels)
estimate <- factor(rep("d", 3), levels)
expect_snapshot(out <- precision_vec(truth, estimate))
expect_identical(out, 0)
# When `d` is the event we get precision = 0
# When `a` is the event we get precision = 1
# When `b` is the event we get precision = 0
# When `c` is the event we get a warning
truth <- factor(c("a", "b", "c"), levels = levels)
estimate <- factor(c("a", "d", "b"), levels)
expect_snapshot(out <- precision_vec(truth, estimate))
expect_identical(out, 1 / 3)
})
test_that("`NA` is still returned if there are some undefined precision values but `na.rm = FALSE`", {
levels <- c("a", "b", "c", "d")
truth <- factor(c("a", "b", "c"), levels = levels)
estimate <- factor(c("a", NA, "c"), levels)
expect_equal(precision_vec(truth, estimate, na_rm = FALSE), NA_real_)
expect_warning(precision_vec(truth, estimate, na_rm = FALSE), NA)
})
test_that("works with hardhat case weights", {
lst <- data_altman()
df <- lst$pathology
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
precision_vec(df$pathology, df$scan, case_weights = imp_wgt)
)
expect_no_error(
precision_vec(df$pathology, df$scan, case_weights = freq_wgt)
)
})
test_that("work with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
fct_estimate <- two_class_example$predicted
fct_estimate[2] <- NA
expect_identical(
precision_vec(fct_truth, cp_estimate),
precision_vec(fct_truth, fct_estimate)
)
expect_identical(
precision_vec(fct_truth, cp_estimate, na_rm = FALSE),
NA_real_
)
expect_snapshot(
error = TRUE,
precision_vec(cp_truth, cp_estimate)
)
})
# sklearn compare --------------------------------------------------------------
test_that("Two class - sklearn equivalent", {
py_res <- read_pydata("py-precision")
r_metric <- precision
expect_equal(
r_metric(two_class_example, truth, predicted)[[".estimate"]],
py_res$binary
)
})
test_that("Multi class - sklearn equivalent", {
py_res <- read_pydata("py-precision")
r_metric <- precision
expect_equal(
r_metric(hpc_cv, obs, pred)[[".estimate"]],
py_res$macro
)
expect_equal(
r_metric(hpc_cv, obs, pred, "micro")[[".estimate"]],
py_res$micro
)
expect_equal(
r_metric(hpc_cv, obs, pred, "macro_weighted")[[".estimate"]],
py_res$weighted
)
})
test_that("Two class case weighted - sklearn equivalent", {
py_res <- read_pydata("py-precision")
r_metric <- precision
two_class_example$weights <- read_weights_two_class_example()
expect_equal(
r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]],
py_res$case_weight$binary
)
})
test_that("Multi class case weighted - sklearn equivalent", {
py_res <- read_pydata("py-precision")
r_metric <- precision
hpc_cv$weights <- read_weights_hpc_cv()
expect_equal(
r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]],
py_res$case_weight$macro
)
expect_equal(
r_metric(hpc_cv, obs, pred, estimator = "micro", case_weights = weights)[[".estimate"]],
py_res$case_weight$micro
)
expect_equal(
r_metric(hpc_cv, obs, pred, estimator = "macro_weighted", case_weights = weights)[[".estimate"]],
py_res$case_weight$weighted
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.