Description Usage Arguments Value Examples
Simulate outcomes from a Bayer CRM design
| 1 2 3 4 5 6 7 8 9 10 11 12 13 | 
| object | the  | 
| nsim | the number of simulations (default: 1) | 
| seed | see  | 
| truth | a function which takes as input a dose (vector) and returns the
true probability (vector) for toxicity. Additional arguments can be supplied
in  | 
| args | data frame with arguments for the  | 
| firstSeparate | enroll the first patient separately from the rest of the cohort? (not default) If yes, the cohort will be closed if a DLT occurs in this patient. | 
| mcmcOptions | object of class  | 
| parallel | should the simulation runs be parallelized across the clusters of the computer? (not default) | 
| nCores | how many cores should be used for parallel computing? Defaults to the number of cores on the machine, maximum 5. | 
| ... | not used | 
an object of class Simulations
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | # nolint start
# Define the dose-grid
emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))
# Initialize the CRM model 
model <- LogisticLogNormal(mean=c(-0.85, 1),
                           cov=
                             matrix(c(1, -0.5, -0.5, 1),
                                    nrow=2),
                           ref_dose=56)
# Choose the rule for selecting the next dose 
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
                           overdose=c(0.35, 1),
                           maxOverdoseProb=0.25)
# Choose the rule for the cohort-size 
mySize1 <- CohortSizeRange(intervals=c(0, 30),
                           cohortSize=c(1, 3))
mySize2 <- CohortSizeDLT(DLTintervals=c(0, 1),
                         cohortSize=c(1, 3))
mySize <- maxSize(mySize1, mySize2)
# Choose the rule for stopping
myStopping1 <- StoppingMinCohorts(nCohorts=3)
myStopping2 <- StoppingTargetProb(target=c(0.2, 0.35),
                                  prob=0.5)
myStopping3 <- StoppingMinPatients(nPatients=20)
myStopping <- (myStopping1 & myStopping2) | myStopping3
# Choose the rule for dose increments
myIncrements <- IncrementsRelative(intervals=c(0, 20),
                                   increments=c(1, 0.33))
# Initialize the design
design <- Design(model=model,
                 nextBest=myNextBest,
                 stopping=myStopping,
                 increments=myIncrements,
                 cohortSize=mySize,
                 data=emptydata,
                 startingDose=3)
## define the true function
myTruth <- probFunction(model, alpha0 = 7, alpha1 = 8)
# Run the simulation on the desired design
# We only generate 1 trial outcomes here for illustration, for the actual study 
# this should be increased of course
options <- McmcOptions(burnin=100,
                       step=1,
                       samples=2000)
time <- system.time(mySims <- simulate(design,
                                       args=NULL,
                                       truth=myTruth,
                                       nsim=1,
                                       seed=819,
                                       mcmcOptions=options,
                                       parallel=FALSE))[3]
  
# nolint end
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.