size: Determine the size of the next cohort

Description Usage Arguments Value Functions Examples

Description

This function determines the size of the next cohort.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
size(cohortSize, dose, data, ...)

## S4 method for signature 'CohortSizeRange,ANY,Data'
size(cohortSize, dose, data, ...)

## S4 method for signature 'CohortSizeDLT,ANY,Data'
size(cohortSize, dose, data, ...)

## S4 method for signature 'CohortSizeMax,ANY,Data'
size(cohortSize, dose, data, ...)

## S4 method for signature 'CohortSizeMin,ANY,Data'
size(cohortSize, dose, data, ...)

## S4 method for signature 'CohortSizeConst,ANY,Data'
size(cohortSize, dose, data, ...)

## S4 method for signature 'CohortSizeParts,ANY,DataParts'
size(cohortSize, dose, data, ...)

Arguments

cohortSize

The rule, an object of class CohortSize

dose

the next dose

data

The data input, an object of class Data

...

additional arguments

Value

the size as integer value

Functions

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# nolint start

# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
             y=c(0, 0, 0, 0, 0, 0, 1, 0),
             cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
             doseGrid=
               c(0.1, 0.5, 1.5, 3, 6,
                 seq(from=10, to=80, by=2)))

# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
                           cov=
                             matrix(c(1, -0.5, -0.5, 1),
                                    nrow=2),
                           ref_dose=56)

# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
                       step=2,
                       samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)

# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
                                   increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
                       data=data)

# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
                           overdose=c(0.35, 1),
                           maxOverdoseProb=0.25)

# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
                               doselimit=nextMaxDose,
                               samples=samples, model=model, data=data)

# Rule for the cohort size: 
#   - having cohort of size 1 for doses <10
#   - and having cohort of size 3 for doses >=10
mySize <- CohortSizeRange(intervals=c(0, 10),
                          cohortSize=c(1, 3))

# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)

# nolint end
# nolint start

# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
             y=c(0, 0, 0, 0, 0, 0, 1, 0),
             cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
             doseGrid=
               c(0.1, 0.5, 1.5, 3, 6,
                 seq(from=10, to=80, by=2)))

# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
                           cov=
                             matrix(c(1, -0.5, -0.5, 1),
                                    nrow=2),
                           ref_dose=56)

# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
                       step=2,
                       samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)

# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
                                   increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
                       data=data)

# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
                           overdose=c(0.35, 1),
                           maxOverdoseProb=0.25)

# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
                               doselimit=nextMaxDose,
                               samples=samples, model=model, data=data)

# Rule for the cohort size: 
#   - having cohort of size 1 if no DLTs were yet observed
#   - and having cohort of size 3 if at least 1 DLT was already observed
mySize <- CohortSizeDLT(DLTintervals = c(0, 1),
                        cohortSize = c(1, 3))

# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)

# nolint end
# nolint start

# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
             y=c(0, 0, 0, 0, 0, 0, 1, 0),
             cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
             doseGrid=
               c(0.1, 0.5, 1.5, 3, 6,
                 seq(from=10, to=80, by=2)))

# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
                           cov=
                             matrix(c(1, -0.5, -0.5, 1),
                                    nrow=2),
                           ref_dose=56)

# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
                       step=2,
                       samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)

# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
                                   increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
                       data=data)

# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
                           overdose=c(0.35, 1),
                           maxOverdoseProb=0.25)

# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
                               doselimit=nextMaxDose,
                               samples=samples, model=model, data=data)

# Rule for having cohort of size 1 for doses <30
#      and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(intervals = c(0, 10),
                           cohortSize = c(1, 3))

# Rule for having cohort of size 1 until no DLT were observed
#      and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(DLTintervals=c(0, 1),
                         cohortSize=c(1, 3))

# Combining the two rules for cohort size by taking the maximum of the sample sizes
# of the single rules
mySize <- maxSize(mySize1, mySize2)

# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)

# nolint end
# nolint start

# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
             y=c(0, 0, 0, 0, 0, 0, 1, 0),
             cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
             doseGrid=
               c(0.1, 0.5, 1.5, 3, 6,
                 seq(from=10, to=80, by=2)))

# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
                           cov=
                             matrix(c(1, -0.5, -0.5, 1),
                                    nrow=2),
                           ref_dose=56)

# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
                       step=2,
                       samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)

# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
                                   increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
                       data=data)

# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
                           overdose=c(0.35, 1),
                           maxOverdoseProb=0.25)

# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
                               doselimit=nextMaxDose,
                               samples=samples, model=model, data=data)

# Rule for having cohort of size 1 for doses <30
#      and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(intervals = c(0, 30),
                           cohortSize = c(1, 3))

# Rule for having cohort of size 1 until no DLT were observed
#      and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(DLTintervals=c(0, 1),
                         cohortSize=c(1, 3))

# Combining the two rules for cohort size by taking the minimum of the sample sizes
# of the single rules
mySize <- minSize(mySize1, mySize2)

# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)

# nolint end
# nolint start

# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
             y=c(0, 0, 0, 0, 0, 0, 1, 0),
             cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
             doseGrid=
               c(0.1, 0.5, 1.5, 3, 6,
                 seq(from=10, to=80, by=2)))

# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
                           cov=
                             matrix(c(1, -0.5, -0.5, 1),
                                    nrow=2),
                           ref_dose=56)

# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
                       step=2,
                       samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)

# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
                                   increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
                       data=data)

# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
                           overdose=c(0.35, 1),
                           maxOverdoseProb=0.25)

# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
                               doselimit=nextMaxDose,
                               samples=samples, model=model, data=data)

# Rule for having cohorts with constant cohort size of 3
mySize <- CohortSizeConst(size=3)

# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)

# nolint end
# nolint start

# create an object of class 'DataParts'
data <- DataParts(x=c(0.1,0.5,1.5),
                  y=c(0,0,0),
                  doseGrid=c(0.1,0.5,1.5,3,6,
                             seq(from=10,to=80,by=2)),
                  part=c(1L,1L,1L),
                  nextPart=1L,
                  part1Ladder=c(0.1,0.5,1.5,3,6,10))

# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
                           cov=
                             matrix(c(1, -0.5, -0.5, 1),
                                    nrow=2),
                           ref_dose=56)

# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
                       step=2,
                       samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)

myIncrements <- IncrementsRelativeParts(dltStart=0,
                                        cleanStart=1)
nextMaxDose <- maxDose(myIncrements,
                       data=data)

# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
                           overdose=c(0.35, 1),
                           maxOverdoseProb=0.25)

# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
                               doselimit=nextMaxDose,
                               samples=samples, 
                               model=model, 
                               data=data)

# Rule for the cohort size: 
mySize <- CohortSizeParts(sizes=c(1,3))

# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)

# nolint end

0liver0815/onc-crmpack-test documentation built on Feb. 19, 2022, 12:25 a.m.