Description Usage Arguments Value Functions Examples
This function determines the size of the next cohort.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeRange,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeDLT,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeMax,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeMin,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeConst,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeParts,ANY,DataParts'
size(cohortSize, dose, data, ...)
|
cohortSize |
The rule, an object of class
|
dose |
the next dose |
data |
The data input, an object of class |
... |
additional arguments |
the size as integer value
size,CohortSizeRange,ANY,Data-method
: Determine the cohort size based on the range into which the
next dose falls into
size,CohortSizeDLT,ANY,Data-method
: Determine the cohort size based on the number of DLTs so
far
size,CohortSizeMax,ANY,Data-method
: Size based on maximum of multiple cohort size rules
size,CohortSizeMin,ANY,Data-method
: Size based on minimum of multiple cohort size rules
size,CohortSizeConst,ANY,Data-method
: Constant cohort size
size,CohortSizeParts,ANY,DataParts-method
: Cohort size based on the parts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | # nolint start
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for the cohort size:
# - having cohort of size 1 for doses <10
# - and having cohort of size 3 for doses >=10
mySize <- CohortSizeRange(intervals=c(0, 10),
cohortSize=c(1, 3))
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# nolint end
# nolint start
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for the cohort size:
# - having cohort of size 1 if no DLTs were yet observed
# - and having cohort of size 3 if at least 1 DLT was already observed
mySize <- CohortSizeDLT(DLTintervals = c(0, 1),
cohortSize = c(1, 3))
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# nolint end
# nolint start
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for having cohort of size 1 for doses <30
# and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(intervals = c(0, 10),
cohortSize = c(1, 3))
# Rule for having cohort of size 1 until no DLT were observed
# and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(DLTintervals=c(0, 1),
cohortSize=c(1, 3))
# Combining the two rules for cohort size by taking the maximum of the sample sizes
# of the single rules
mySize <- maxSize(mySize1, mySize2)
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# nolint end
# nolint start
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for having cohort of size 1 for doses <30
# and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(intervals = c(0, 30),
cohortSize = c(1, 3))
# Rule for having cohort of size 1 until no DLT were observed
# and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(DLTintervals=c(0, 1),
cohortSize=c(1, 3))
# Combining the two rules for cohort size by taking the minimum of the sample sizes
# of the single rules
mySize <- minSize(mySize1, mySize2)
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# nolint end
# nolint start
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for having cohorts with constant cohort size of 3
mySize <- CohortSizeConst(size=3)
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# nolint end
# nolint start
# create an object of class 'DataParts'
data <- DataParts(x=c(0.1,0.5,1.5),
y=c(0,0,0),
doseGrid=c(0.1,0.5,1.5,3,6,
seq(from=10,to=80,by=2)),
part=c(1L,1L,1L),
nextPart=1L,
part1Ladder=c(0.1,0.5,1.5,3,6,10))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
myIncrements <- IncrementsRelativeParts(dltStart=0,
cleanStart=1)
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples,
model=model,
data=data)
# Rule for the cohort size:
mySize <- CohortSizeParts(sizes=c(1,3))
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# nolint end
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.