# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of PathwayVisualizer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' @import data.table
#' @import dplyr
#' @export
plotRaw_1 <- function(fromYear,
toYear,
numberedCohort,
cohortDescript,
outputFileTitle,
outputFolderPath,
saveFile = TRUE){
# 1. Usage pattern graph
numberedCohort <- numberedCohort %>% subset(cycle == 1)
numberedCohort <- numberedCohort %>% select(-cohortName,-cycle)
numberedCohort$cohortStartDate <- as.Date(numberedCohort$cohortStartDate)
numberedCohort$cohortEndDate <- as.Date(numberedCohort$cohortEndDate)
numberedCohort <- dplyr::left_join(numberedCohort,cohortDescript, by= c("cohortDefinitionId"="cohortDefinitionId"))
numberedCohort <- numberedCohort %>% select(subjectId,cohortName,cohortStartDate)
numberedCohort$cohortStartDate <- format(as.Date(numberedCohort$cohortStartDate, format="Y-%m-%d"),"%Y")
numberedCohort <- numberedCohort %>% group_by(cohortStartDate,cohortName)
numberedCohort <- unique(numberedCohort)
numberedCohort <- numberedCohort %>%
summarise(n=n()) %>%
ungroup() %>%
arrange(cohortName,cohortStartDate) %>%
group_by(cohortStartDate) %>%
mutate(total = sum(n)) %>%
mutate(proportion = round(n/total*100,1)) %>%
select(cohortStartDate,cohortName,proportion)
colnames(numberedCohort) <- c('Year','Cohort','proportion')
numberedCohort$Year <- as.integer(numberedCohort$Year)
Year <- rep(c(fromYear:toYear),length(unique(numberedCohort$Cohort)))
Cohort <- sort(rep(unique(numberedCohort$Cohort),length(c(fromYear:toYear))))
index <- data.frame(Year,Cohort)
index$Year <- as.integer(index$Year)
index$Cohort <- as.character(index$Cohort)
plotData <- left_join(index,numberedCohort)
plotData[is.na(plotData)] <- 0
# Write raw data
if(saveFile){
fileName <- paste0(outputFileTitle,'_','RegimenUsagePattern.csv')
write.csv(plotData, file.path(outputFolderPath, fileName),row.names = F)
}
return(plotData)
# 2. Treatment Iteration heatmap
# 3. Treatment Pathway - including table
# 4. Event incidence in each cycle
# 5. Event onset timing
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.