source("DataPulls.R")
source("PlotsAndTables.R")
# shinySettings <- list(dataFolder = "c:/temp/shinyDataNoPcs", blind = FALSE)
dataFolder <- shinySettings$dataFolder
blind <- shinySettings$blind
connection <- NULL
positiveControlOutcome <- NULL
splittableTables <- c("covariate_balance", "preference_score_dist", "kaplan_meier_dist")
files <- list.files(dataFolder, pattern = ".rds")
# Remove data already in global environment:
tableNames <- gsub("(_t[0-9]+_c[0-9]+)|(_)[^_]*\\.rds", "", files)
camelCaseNames <- SqlRender::snakeCaseToCamelCase(tableNames)
camelCaseNames <- unique(camelCaseNames)
camelCaseNames <- camelCaseNames[!(camelCaseNames %in% SqlRender::snakeCaseToCamelCase(splittableTables))]
rm(list = camelCaseNames)
# Load data from data folder:
loadFile <- function(file) {
# file = files[13]
tableName <- gsub("(_t[0-9]+_c[0-9]+)|(_)[^_]*\\.rds", "", file)
camelCaseName <- SqlRender::snakeCaseToCamelCase(tableName)
if (!(tableName %in% splittableTables)) {
newData <- readRDS(file.path(dataFolder, file))
colnames(newData) <- SqlRender::snakeCaseToCamelCase(colnames(newData))
if (exists(camelCaseName, envir = .GlobalEnv)) {
existingData <- get(camelCaseName, envir = .GlobalEnv)
newData <- rbind(existingData, newData)
}
assign(camelCaseName, newData, envir = .GlobalEnv)
}
invisible(NULL)
}
lapply(files, loadFile)
tcos <- unique(cohortMethodResult[, c("targetId", "comparatorId", "outcomeId")])
tcos <- tcos[tcos$outcomeId %in% outcomeOfInterest$outcomeId, ]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.