PlotHtmp: Produce ComplexHeatmap from count data.

Description Usage Arguments Details Author(s) Examples

View source: R/src_PlotHtmp.R

Description

This minimal function accepts a count matrix (columns=samples, rows=regions/genes) and then uses ComplexHeatmap::Heatmap() to produce plot.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
PlotHtmp(
  InputData,
  ScaleByQuantile = NULL,
  Htmp.colors = c("blue", "black", "red"),
  Htmp.title = NULL,
  Htmp.titlesize = 25,
  Htmp.legendname = NULL,
  Htmp.legendpos = "left",
  Htmp.colnamesize = 1.5,
  Htmp.columnorder = NULL,
  Htmp.colorsplit = NULL,
  Htmp.return = FALSE,
  Htmp.hclustRow = NULL,
  Htmp.nclusters = NULL
)

Arguments

InputData

a matrix or dataframe with the count data to be plotted

ScaleByQuantile

a numeric vector with two elements that define the lower and upper quantile which will be used to winsorize the data in order to limit infuence of outliers on the plot.

Htmp.colors

three colors to be used for color graient

Htmp.title

Main title

Htmp.titlesize

Main title font size

Htmp.legendname

the name of the legend

Htmp.legendpos

legend position

Htmp.colnamesize

font size of the colnames

Htmp.columnorder

a numeric vector to switch column order, see details

Htmp.colorsplit

a numeric vector to define gaps in column groups, see details

Htmp.return

logical, whether to return heatmap to be saved as variable

Htmp.hclustRow

a hclust object to cluster the rows

Htmp.nclusters

number of clusters to extract based on hclust object (basically the k parameter from cutree)

Details

(tba...)

Author(s)

Alexander Toenges

Examples

1
2
3
4
5
6
cts <- sapply(seq(1,10), function(x) rnorm(1000,100))
colnames(cts) <- paste0("sample", seq(1,10))
Htmp <- PlotHtmp(InputData = cts, Htmp.return = TRUE, 
                 Htmp.legendname = "dummy counts", Htmp.title = "A title",
                 Htmp.nclusters = 3, Htmp.hclustRow = hclust(dist(cts)))
Htmp

ATpoint/misterplotR documentation built on Feb. 15, 2020, 12:17 a.m.