#' General Interface for Exponential Smoothing Models
#'
#' `exponential_smoothing()` is a way to generate a _specification_ of an ETS model
#' before fitting and allows the model to be created using
#' different packages. Currently the only package is `Rlgt`.
#'
#' @param mode A single character string for the type of model.
#' The only possible value for this model is "regression".
#' @param seasonality This specification of seasonality will be overridden by frequency of y,
#' if y is of ts or msts class. 1 by default, i.e. no seasonality.
#' @param second_seasonality Second seasonality.
#' @param seasonality_type Either "multiplicative" (default) or "generalized".
#' The latter seasonality generalizes additive and multiplicative seasonality types.
#' @param method "HW", "seasAvg", "HW_sAvg". Here, "HW" follows Holt-Winters approach.
#' "seasAvg" calculates level as a smoothed average of the last seasonality number of points
#' (or seasonality2 of them for the dual seasonality model), and HW_sAvg is an weighted
#' average of HW and seasAvg methods.
#' @param error_method Function providing size of the error. Either "std" (monotonically, but slower than proportionally,
#' growing with the series values) or "innov" (proportional to a smoothed abs size of innovations, i.e. surprises)
#'
#'
#' @details
#' The data given to the function are not saved and are only used
#' to determine the _mode_ of the model. For `exponential_smoothing()`, the
#' mode will always be "regression".
#'
#' The model can be created using the `fit()` function using the
#' following _engines_:
#'
#' - "stan" (default) - Connects to [Rlgt::rlgt()]
#'
#' __Main Arguments__
#'
#' The main arguments (tuning parameters) for the model are:
#'
#' - `seasonality`: Seasonality.
#' - `second_seasonality`: Second seasonality.
#' - `seasonality_type`: Either "multiplicative" (default) or "generalized".
#' - `method`: "HW", "seasAvg", "HW_sAvg"
#' - `error_method`: Either "std" or "innov"
#'
#' These arguments are converted to their specific names at the
#' time that the model is fit.
#'
#' Other options and argument can be
#' set using `set_engine()`.
#'
#' If parameters need to be modified, `update()` can be used
#' in lieu of recreating the object from scratch.
#'
#' __stan (default engine)__
#'
#' The engine uses [Rlgt::rlgt()].
#'
#'
#' Parameter Notes:
#' - `xreg` - This is supplied via the parsnip / bayesmodels `fit()` interface
#' (so don't provide this manually). See Fit Details (below).
#'
#'
#' @section Fit Details:
#'
#' __Date and Date-Time Variable__
#'
#' It's a requirement to have a date or date-time variable as a predictor.
#' The `fit()` interface accepts date and date-time features and handles them internally.
#'
#' - `fit(y ~ date)`
#'
#' __Univariate (No xregs, Exogenous Regressors):__
#'
#' For univariate analysis, you must include a date or date-time feature. Simply use:
#'
#' - Formula Interface: `fit(y ~ date)` will ignore xreg's.
#'
#' __Multivariate (xregs, Exogenous Regressors)__
#'
#' The `xreg` parameter is populated using the `fit()` function:
#'
#' - Only `factor`, `ordered factor`, and `numeric` data will be used as xregs.
#' - Date and Date-time variables are not used as xregs
#' - `character` data should be converted to factor.
#'
#' _Xreg Example:_ Suppose you have 3 features:
#'
#' 1. `y` (target)
#' 2. `date` (time stamp),
#' 3. `month.lbl` (labeled month as a ordered factor).
#'
#' The `month.lbl` is an exogenous regressor that can be passed to the `expotential_smoothing()` using
#' `fit()`:
#'
#' - `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.
#'
#' Note that date or date-time class values are excluded from `xreg`.
#'
#'
#'
#' @seealso [fit.model_spec()], [set_engine()]
#'
#' @return A model spec
#'
#' @examples
#' \dontrun{
#' library(dplyr)
#' library(parsnip)
#' library(rsample)
#' library(timetk)
#' library(modeltime)
#' library(bayesmodels)
#'
#' # Data
#' m750 <- m4_monthly %>% filter(id == "M750")
#' m750
#'
#' # Split Data 80/20
#' splits <- rsample::initial_time_split(m750, prop = 0.8)
#'
#' # ---- ARIMA ----
#'
#' # Model Spec
#' model_spec <- exponential_smoothing() %>%
#' set_engine("stan")
#'
#' # Fit Spec
#' model_fit <- model_spec %>%
#' fit(log(value) ~ date + month(date), data = training(splits))
#' model_fit
#'}
#' @export
exponential_smoothing <- function(mode = "regression", seasonality = NULL, second_seasonality = NULL, seasonality_type = NULL,
method = NULL, error_method = NULL) {
args <- list(
seasonality = rlang::enquo(seasonality),
second_seasonality = rlang::enquo(second_seasonality),
seasonality_type = rlang::enquo(seasonality_type),
method = rlang::enquo(method),
error_method = rlang::enquo(error_method)
)
parsnip::new_model_spec(
"exponential_smoothing",
args = args,
eng_args = NULL,
mode = mode,
method = NULL,
engine = NULL
)
}
#' @export
print.exponential_smoothing <- function(x, ...) {
cat("Exponential Smoothing Model Specification (", x$mode, ")\n\n", sep = "")
parsnip::model_printer(x, ...)
if(!is.null(x$method$fit$args)) {
cat("Model fit template:\n")
print(parsnip::show_call(x))
}
invisible(x)
}
#' @export
#' @importFrom stats update
update.exponential_smoothing <- function(object, parameters = NULL,
seasonality = NULL, second_seasonality = NULL, seasonality_type = NULL,
method = NULL, error_method = NULL,
fresh = FALSE, ...) {
parsnip::update_dot_check(...)
if (!is.null(parameters)) {
parameters <- parsnip::check_final_param(parameters)
}
args <- list(
seasonality = rlang::enquo(seasonality),
second_seasonality = rlang::enquo(second_seasonality),
seasonality_type = rlang::enquo(seasonality_type),
method = rlang::enquo(method),
error_method = rlang::enquo(error_method)
)
args <- parsnip::update_main_parameters(args, parameters)
if (fresh) {
object$args <- args
} else {
null_args <- purrr::map_lgl(args, parsnip::null_value)
if (any(null_args))
args <- args[!null_args]
if (length(args) > 0)
object$args[names(args)] <- args
}
parsnip::new_model_spec(
"exponential_smoothing",
args = object$args,
eng_args = object$eng_args,
mode = object$mode,
method = NULL,
engine = object$engine
)
}
#' @export
#' @importFrom parsnip translate
translate.exponential_smoothing <- function(x, engine = x$engine, ...) {
if (is.null(engine)) {
message("Used `engine = 'stan'` for translation.")
engine <- "stan"
}
x <- parsnip::translate.default(x, engine, ...)
x
}
# FIT - Arima -----
#' Low-Level ARIMA function for translating modeltime to forecast
#'
#' @param x A dataframe of xreg (exogenous regressors)
#' @param y A numeric vector of values to fit
#' @param seasonality Seasonality
#' @param seasonality2 Second seasonality
#' @param seasonality.type Either "multiplicative" (default) or "generalized".
#' The latter seasonality generalizes additive and multiplicative seasonality types.
#' @param level.method "HW", "seasAvg", "HW_sAvg"
#' @param error.size.method Either "std" (monotonically, but slower than proportionally,
#' growing with the series values) or "innov" (proportional to a smoothed abs size of innovations, i.e. surprises)
#' @param ... Additional arguments passed to `forecast::Arima`
#'
#' @return A modeltime model
#'
#' @export
exp_smoothing_stan_fit_impl <- function(x, y, seasonality = 1, seasonality2 = 1, seasonality.type = "multiplicative",
error.size.method = "std", level.method = "HW", ...) {
# X & Y
# Expect outcomes = vector
# Expect predictor = data.frame
outcome <- y
predictor <- x
# INDEX & PERIOD
# Determine Period, Index Col, and Index
index_tbl <- modeltime::parse_index_from_data(predictor)
period <- modeltime::parse_period_from_index(index_tbl, "auto")
idx_col <- names(index_tbl)
idx <- timetk::tk_index(index_tbl)
names_predictor <- names(predictor) %>% dplyr::setdiff(idx_col)
predictor <- predictor %>% dplyr::select(dplyr::all_of(names_predictor))
# XREGS
# Clean names, get xreg recipe, process predictors
xreg_recipe <- modeltime::create_xreg_recipe(predictor, prepare = TRUE)
xreg_matrix <- modeltime::juice_xreg_recipe(xreg_recipe, format = "matrix")
# FIT
outcome <- stats::ts(outcome, frequency = period)
if (!is.null(xreg_matrix)) {
fit_smooth <- Rlgt::rlgt(y = outcome,
seasonality = seasonality,
seasonality2 = seasonality2,
seasonality.type = seasonality.type,
error.size.method = error.size.method,
level.method = level.method,
xreg = xreg_matrix,
...)
} else {
fit_smooth <- Rlgt::rlgt(y = outcome,
seasonality = seasonality,
seasonality2 = seasonality2,
seasonality.type = seasonality.type,
error.size.method = error.size.method,
level.method = level.method,
...)
}
rlgt_fit=function(x){
fit=rstan::extract(x,pars="l")
fit1=fit$l
d=dim(fit1)
values=c()
for(i in 1:d[2]){
values[i]=mean(fit1[,i])
}
return(values)
}
rlgt_res=function(x,y){
res=x-y
return(res)
}
# RETURN
modeltime::new_modeltime_bridge(
class = "exp_smoothing_stan_fit_impl",
# Models
models = list(
model_1 = fit_smooth
),
# Data - Date column (matches original), .actual, .fitted, and .residuals columns
data = tibble::tibble(
!! idx_col := idx ,
.actual = outcome,
.fitted = rlgt_fit(fit_smooth$samples),
.residuals = rlgt_res(outcome, rlgt_fit(fit_smooth$samples))
),
# Preprocessing Recipe (prepped) - Used in predict method
extras = list(
xreg_recipe = xreg_recipe
),
# Description - Convert arima model parameters to short description
desc = "Exponential Smoothing Model"
)
}
#' @export
print.exp_smoothing_stan_fit_impl <- function(x, ...) {
print(x$models$model_1)
invisible(x)
}
#' @export
predict.exp_smoothing_stan_fit_impl <- function(object, new_data, ...) {
exp_smoothing_stan_predict_impl(object, new_data, ...)
}
#' Bridge prediction function for ARIMA models
#'
#' @inheritParams parsnip::predict.model_fit
#' @param ... Additional arguments passed to `forecast::Arima()`
#'
#' @return A prediction
#'
#' @export
exp_smoothing_stan_predict_impl <- function(object, new_data, ...) {
# PREPARE INPUTS
model <- object$models$model_1
preds_foecast <- stats::predict(model, new_data, ...)
# Return predictions as numeric vector
preds <- tibble::as_tibble(preds_forecast) %>% purrr::pluck(1)
return(preds)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.