AlbyDR 2021-11-18
invisible(lapply(c("rSCOPE", "svMisc", "tidyverse","lubridate" ,"ggplot2"),
library, character.only = T, quietly = TRUE, warn.conflicts = F))
print(model_inputs(SCOPE_dir = "D:/SCOPE-master/")[[1]], n = 20) #32
## # A tibble: 32 x 2
## X1 X2
## <chr> <chr>
## 1 Simulation_Name work_shop_
## 2 soil_file soilROTH.txt
## 3 meteo_ec_csv csv_inputs.csv
## 4 t t
## 5 Rin Rin_DWD
## 6 Rli Rli_DWD
## 7 p p_DWD
## 8 Ta Ta_DWD
## 9 u ws_DWD
## 10 ea <NA>
## 11 RH RH_DWD
## 12 tts tts
## 13 tto <NA>
## 14 psi psi
## 15 Cab <NA>
## 16 Cca <NA>
## 17 Cdm <NA>
## 18 Cw <NA>
## 19 Cs <NA>
## 20 Cant <NA>
## # ... with 12 more rows
print(model_inputs(SCOPE_dir = "D:/SCOPE-master/")[[2]], n = 20) #89
## # A tibble: 89 x 2
## X1 X2
## <chr> <dbl>
## 1 PROSPECT NA
## 2 Cab 40
## 3 Cca 10
## 4 Cdm 0.012
## 5 Cw 0.009
## 6 Cs 0
## 7 Cant 1
## 8 Cp 0
## 9 Cbc 0
## 10 N 1.5
## 11 rho_thermal 0.01
## 12 tau_thermal 0.01
## 13 <NA> NA
## 14 Leaf_Biochemical NA
## 15 Vcmax25 60
## 16 BallBerrySlope 8
## 17 BallBerry0 0.01
## 18 Type 0
## 19 kV 0.64
## 20 Rdparam 0.015
## # ... with 69 more rows
print(model_inputs(SCOPE_dir = "D:/SCOPE-master/")[[3]], n = 18) #18
## # A tibble: 18 x 2
## X1 X2
## <dbl> <chr>
## 1 1 lite
## 2 0 calc_fluor
## 3 0 calc_planck
## 4 0 calc_xanthophyllabs
## 5 0 soilspectrum
## 6 0 Fluorescence_model
## 7 1 applTcorr
## 8 0 verify
## 9 1 saveCSV
## 10 0 mSCOPE
## 11 1 simulation
## 12 0 calc_directional
## 13 0 calc_vert_profiles
## 14 1 soil_heat_method
## 15 0 calc_rss_rbs
## 16 1 MoninObukhov
## 17 1 save_spectral
## 18 1 calc_ebal
TUCC_SCOPEinput <- readRDS("EC_TUCC_SCOPE.rds")
ROTH_SCOPEinput <- readRDS("EC_ROTH_SCOPE.rds")
run_SCOPE(csv_inputs = ROTH_SCOPEinput[4001:4744,],
Simulation_Name = "work_shop_",
split = FALSE,
# variable names
t = "t", Rin = "Rin_DWD", Rli = "Rli_DWD",
p = "p_DWD", Ta = "Ta_DWD", RH = "RH_DWD", ea = NA,
u = "ws_DWD", tts = "tts", tto = NA, psi = "psi",
SMC = "SMC60_DWD", LAI ="LAI_FP", hc = NA,
### constants values (non-default)
hc_c = 2,
LAI_c = 3,
SMC_c = 25,
z_c = 40, # measurements height
LAT = 52.45,
LON = 13.32,
timezn = 0, # Lat/long and time zone
startDOY = 20190101,
endDOY = 20210101, # timestamp period (endDOY should be one day after)
### settings values (non-default)
lite = 1, # faster
simulation = 1, # time series
soilspectrum = 0,
soil_heat_method = 1, # soil options
applTcorr = 1,
MoninObukhov = 1,
calc_rss_rbs = 0, # corrections
save_spectral = 1)
summary(ROTH_SCOPEinput)
## t Ta_EC RH_EC p_EC
## Min. :2.019e+11 Min. :-7.235 Min. :13.82 Min. : 971.8
## 1st Qu.:2.019e+11 1st Qu.: 5.451 1st Qu.:54.84 1st Qu.: 998.9
## Median :2.020e+11 Median :10.666 Median :72.75 Median :1004.8
## Mean :2.020e+11 Mean :11.535 Mean :69.70 Mean :1004.6
## 3rd Qu.:2.020e+11 3rd Qu.:17.070 3rd Qu.:86.51 3rd Qu.:1010.9
## Max. :2.020e+11 Max. :36.527 Max. :99.61 Max. :1035.5
##
## ws_EC Rin_EC Rli_EC zd
## Min. : 0.1641 Min. : 0.000 Min. :208.7 Min. :14.52
## 1st Qu.: 2.2258 1st Qu.: 0.000 1st Qu.:293.6 1st Qu.:16.50
## Median : 2.9233 Median : 2.656 Median :324.0 Median :17.43
## Mean : 3.0852 Mean :133.518 Mean :321.8 Mean :18.18
## 3rd Qu.: 3.7857 3rd Qu.:191.397 3rd Qu.:351.5 3rd Qu.:19.29
## Max. :11.1023 Max. :984.511 Max. :451.1 Max. :38.27
##
## Ta_DWD RH_DWD p_DWD ws_DWD
## Min. :-6.717 Min. :14.75 Min. : 982.8 Min. : 0.500
## 1st Qu.: 5.399 1st Qu.:58.40 1st Qu.:1009.2 1st Qu.: 2.115
## Median :10.396 Median :76.27 Median :1015.4 Median : 2.859
## Mean :11.375 Mean :72.54 Mean :1015.2 Mean : 3.057
## 3rd Qu.:16.834 3rd Qu.:89.26 3rd Qu.:1021.8 3rd Qu.: 3.801
## Max. :37.776 Max. :99.99 Max. :1047.1 Max. :10.611
##
## Rin_DWD Rin_3987_DWD Rli_DWD tts
## Min. : 0.000 Min. : 0.00 Min. :205.0 Min. :29.31
## 1st Qu.: 0.000 1st Qu.: 0.00 1st Qu.:291.7 1st Qu.:68.13
## Median : 6.314 Median : 5.56 Median :322.2 Median :85.00
## Mean :138.417 Mean :132.47 Mean :320.5 Mean :74.84
## 3rd Qu.:210.015 3rd Qu.:186.11 3rd Qu.:350.0 3rd Qu.:85.00
## Max. :864.749 Max. :972.22 Max. :452.8 Max. :85.00
##
## psi LAI_FP LAI_extent LAI_buffer
## Min. : 3.529 Min. :0.05736 Min. :0.1587 Min. :0.1450
## 1st Qu.: 52.324 1st Qu.:0.56039 1st Qu.:0.4118 1st Qu.:0.4944
## Median : 90.582 Median :0.86985 Median :0.7726 Median :0.8087
## Mean : 90.183 Mean :0.97807 Mean :0.8364 Mean :0.8819
## 3rd Qu.:128.404 3rd Qu.:1.42093 3rd Qu.:1.3109 3rd Qu.:1.3445
## Max. :174.609 Max. :2.12155 Max. :1.5417 Max. :1.5592
##
## LAI_1169 LAI_mean LAI_max hc_1m
## Min. :0.1529 Min. :0.5844 Min. :0.4422 Min. : 1.291
## 1st Qu.:0.4611 1st Qu.:0.7289 1st Qu.:0.9544 1st Qu.: 4.801
## Median :0.7107 Median :1.3328 Median :2.0615 Median : 5.679
## Mean :0.8410 Mean :1.3693 Mean :2.4774 Mean : 5.743
## 3rd Qu.:1.3238 3rd Qu.:1.8580 3rd Qu.:4.1918 3rd Qu.: 6.564
## Max. :1.5472 Max. :2.4726 Max. :5.4474 Max. :15.356
##
## hc_1m_poly hc_1m_poly_max hc_vh hc_vh_block
## Min. : 8.675 Min. :17.22 Min. : 4.050 Min. : 1.261
## 1st Qu.:12.142 1st Qu.:24.27 1st Qu.: 9.034 1st Qu.: 7.399
## Median :13.073 Median :25.70 Median : 9.639 Median : 8.121
## Mean :12.769 Mean :25.39 Mean : 9.462 Mean : 7.993
## 3rd Qu.:13.363 3rd Qu.:26.53 3rd Qu.: 9.987 3rd Qu.: 8.754
## Max. :14.354 Max. :32.76 Max. :11.157 Max. :10.292
##
## SMC10_DWD SMC20_DWD SMC40_DWD SMC60_DWD
## Min. : 0.00002 Min. : 0.00153 Min. : 34.91 Min. : 69.20
## 1st Qu.: 5.92079 1st Qu.: 3.76254 1st Qu.: 55.65 1st Qu.: 77.01
## Median : 62.75272 Median :57.79334 Median : 75.35 Median : 82.44
## Mean : 51.91343 Mean :47.90869 Mean : 70.76 Mean : 83.50
## 3rd Qu.: 91.75662 3rd Qu.:86.19772 3rd Qu.: 83.79 3rd Qu.: 88.84
## Max. : 99.99942 Max. :99.96792 Max. :100.00 Max. :100.00
##
## SMC10_EC SMC20_EC SMC60_EC dry_hours
## Min. : 0.5198 Min. : 0.0005 Min. :10.41 Min. : 0.00
## 1st Qu.: 3.6043 1st Qu.: 1.3269 1st Qu.:12.42 1st Qu.: 8.00
## Median : 6.2082 Median : 4.3451 Median :21.97 Median : 32.00
## Mean : 7.8459 Mean : 3.8565 Mean :20.13 Mean : 61.34
## 3rd Qu.:11.9513 3rd Qu.: 5.2708 3rd Qu.:25.86 3rd Qu.: 87.25
## Max. :21.2118 Max. :11.7913 Max. :30.41 Max. :400.00
##
## veg_fraction ET_clean
## Min. :0.2203 Min. :-0.132
## 1st Qu.:0.5542 1st Qu.: 0.011
## Median :0.6472 Median : 0.026
## Mean :0.6231 Mean : 0.050
## 3rd Qu.:0.6982 3rd Qu.: 0.070
## Max. :0.8090 Max. : 0.269
## NA's :5803
vars_comb <- expand_grid("LAI"=c("LAI_buffer", "LAI_mean", "LAI_max", NA),
"hc"=c("hc_vc", NA),
"SMC"=c("SMC20_DWD", "SMC60_DWD", NA))
for (i in 1:length(vars_comb$LAI)) {
run_SCOPE(csv_inputs = ROTH_SCOPEinput,
Simulation_Name = paste0("ROTH_DWD", i),
split = FALSE,
# variable names
t = "t", # time BerkeleyJulianDate
Rin = "Rin_DWD", Rli = "Rli_DWD",
p = "p_DWD", Ta = "Ta_DWD", RH = "RH_DWD", ea = NA,
u = "ws_DWD", tts = "tts", tto = NA, psi = NA, # geometry
# variables calibration
LAI = vars_comb$LAI[i],
hc = vars_comb$hc[i], # vegetation height
SMC = vars_comb$SMC[i], # soil
# constants values
LAI_c = 3, # default
hc_c = 2, # default
SMC_c = 25, # default
z_c = 40, #56,
startDOY = 20181201, endDOY =20210130, # timestamp period
LAT = 52.45, LON = 13.32, timezn = 0, # Lat/long and time zone
# settings values (non-default)
lite = 1,
soilspectrum = 0,
soil_file = "soilROTH.txt", # soil spectrum file (save at D:\SCOPE-master\input\soil_spectra)
applTcorr = 1,
soil_heat_method = 1,
MoninObukhov = 1)
progress(i, length(vars_comb$LAI), progress.bar = TRUE, init = T)
Sys.sleep(360) #time delay in seconds
if (i == length(vars_comb$LAI)) message("Done!")
}
SCOPE_parameters_ROTH <- get_parameters(
SCOPE_dir = "D:/SCOPE-master/",
Simulation_Name = "DWD_ROTH_",
Rin = TRUE, Rli = TRUE, p = TRUE, Ta = TRUE, RH = TRUE,
ea = TRUE, u = TRUE, tts = TRUE, psi = TRUE,
LAI = TRUE, hc = TRUE, SMC = TRUE,
LAI_c = TRUE, hc_c = TRUE, SMC_c = TRUE,
z_c = TRUE,
lite = TRUE,
soilspectrum = TRUE,
applTcorr = TRUE,
soil_heat_method = TRUE,
MoninObukhov = TRUE)
for (i in 1:length(SCOPE_parameters_ROTH)) {
print(SCOPE_parameters_ROTH[[i]][16,2])
}
## [1] NA
## [1] NA
## [1] NA
## [1] "LAI_extent"
## [1] "LAI_extent"
## [1] "LAI_extent"
## [1] "LAI_FP"
## [1] "LAI_FP"
## [1] "LAI_FP"
## [1] "LAI_FP"
## [1] "LAI_FP"
## [1] "LAI_FP"
## [1] "LAI_FP"
## [1] "LAI_max"
## [1] "LAI_max"
## [1] "LAI_max"
## [1] "LAI_mean"
## [1] "LAI_mean"
## [1] "LAI_mean"
data("outputs_var")
unique(outputs_var$simulation_file)
## [1] "fluxes.csv"
## [2] "vegetation.csv"
## [3] "aPAR.csv"
## [4] "resistances.csv"
## [5] "radiation.csv"
## [6] "reflectance.csv"
## [7] "rsd.csv"
## [8] "rdd.csv"
## [9] "rso.csv"
## [10] "rdo.csv"
## [11] "Eout_spectrum.csv"
## [12] "Lo_spectrum.csv"
## [13] "Esun.csv"
## [14] "Esky.csv"
## [15] "fluorescence_scalars.csv"
## [16] "fluorescence.csv"
## [17] "sigmaF.csv"
## [18] "fluorescence_hemis.csv"
## [19] "fluorescence_ReabsCorr.csv"
## [20] "Lo_spectrum_inclF.csv"
## [21] "apparent_reflectance.csv"
## [22] "Directional/Angles(SunAngle_x_degrees).dat"
## [23] "Directional/Fluorescence (SunAngle_x_degrees).dat"
outputs_var %>%
filter(simulation_file == "fluxes.csv")
## # A tibble: 17 x 5
## variable_name unit description simulation_file setting
## <chr> <chr> <chr> <chr> <chr>
## 1 simulation_number - time step counter fluxes.csv calc_e~
## 2 nu_iterations - number of iteration~ fluxes.csv calc_e~
## 3 year - year fluxes.csv calc_e~
## 4 DoY - decimal day of year~ fluxes.csv calc_e~
## 5 Rnctot W m-2 net radiation of ca~ fluxes.csv calc_e~
## 6 lEctot W m-2 latent heat flux of~ fluxes.csv calc_e~
## 7 Hctot W m-2 sensible heat of ca~ fluxes.csv calc_e~
## 8 Actot umol m-2 s-1 net photosynthesis ~ fluxes.csv calc_e~
## 9 Tcave degree Celsius weighted average ca~ fluxes.csv calc_e~
## 10 Rnstot W m-2 net radiation of so~ fluxes.csv calc_e~
## 11 lEstot W m-2 latent heat flux of~ fluxes.csv calc_e~
## 12 Hstot W m-2 sensible heat of so~ fluxes.csv calc_e~
## 13 Gtot W m-2 soil heat flux fluxes.csv calc_e~
## 14 Tsave degree Celsius weighted average so~ fluxes.csv calc_e~
## 15 Rntot W m-2 total net radiation fluxes.csv calc_e~
## 16 lEtot W m-2 total latent heat f~ fluxes.csv calc_e~
## 17 Htot W m-2 total sensible heat fluxes.csv calc_e~
outputs_var %>%
filter(simulation_file == "vegetation.csv")
## # A tibble: 7 x 5
## variable_name unit description simulation_file setting
## <chr> <chr> <chr> <chr> <chr>
## 1 Photosynthesis umol m-2 s-1 net photosynthesis o~ vegetation.csv calc_e~
## 2 Electron_transport umol m-2 s-1 electron transport r~ vegetation.csv calc_e~
## 3 NPQ_energy W m-2 non-photochemical qu~ vegetation.csv calc_e~
## 4 NPQ_photon umol m-2 s-1 non-photochemical qu~ vegetation.csv calc_e~
## 5 canopy_level_FQE umol photons~ fluorescence quantum~ vegetation.csv calc_e~
## 6 LST K land surface tempera~ vegetation.csv calc_e~
## 7 emis - thermal energy emiss~ vegetation.csv calc_e~
Predictions_ROTH <- get_predictions(SCOPE_dir = "D:/SCOPE-master/",
output_file = "fluxes.csv",
pred_vec = "lEtot",
Simulation_Name = "DWD_ROTH_")
Predictions_ROTH <- tibble::tibble(data.frame(sapply(1:length(Predictions_ROTH), function(i)
bigleaf::LE.to.ET(Predictions_ROTH[[i]], ROTH_SCOPEinput$Ta_DWD)*3600)))
Pred_ETcor_ROTH <- tibble::tibble(data.frame(sapply(1:length(Predictions_ROTH), function(i)
Predictions_ROTH[[i]]*zoo::na.approx(ROTH_SCOPEinput$veg_fraction))))
nu_interations_ROTH <- get_predictions(SCOPE_dir = "D:/SCOPE-master/",
output_file = "fluxes.csv",
pred_vec = "nu_iterations",
Simulation_Name = "DWD_ROTH_")
metrics_ETc_ROTH <- get_accuracy(obs_vec = ROTH_SCOPEinput$ET_clean,
predictions = Pred_ETcor_ROTH,
metric_function = yardstick::metric_set(yardstick::rsq,
yardstick::rmse,
yardstick::mae),
Filter = FALSE)
metrics_ETc_ROTH <- get_accuracy(obs_vec = ROTH_SCOPEinput$ET_clean,
predictions = Pred_ETcor_ROTH,
metric_function = yardstick::metric_set(yardstick::rsq,
yardstick::rmse,
yardstick::mae),
Filter = TRUE,
timestamp = REddyProc::BerkeleyJulianDateToPOSIXct(ROTH_SCOPEinput$t),
month_start = 1,
month_end = 12,
lat = 52.46,
lon = 13.32,
period = c("night", "day", "dawn_dusk"), # "day", c("night", "day", "dawn_dusk"),
nu_interations = nu_interations_ROTH,
interations = 100, # max 101 interactions
dryhours_vec = ROTH_SCOPEinput$dry_hours,
dry_hours = 24,
neg_vec = ifelse(ROTH_SCOPEinput$ET_clean < 0, 0, 1),
neg_null = 1,
pred_neg = 0,
neg_values = NA)
sapply(1:length(SCOPE_parameters_ROTH), FUN = function(i) (SCOPE_parameters_ROTH[[i]][2,2])) %>%
str_replace("DWD_ROTH_", "") -> metrics_ETc_ROTH$run_name
rowid_to_column(tibble(data.frame(metrics_ETc_ROTH))) %>%
arrange(.[[3]])
## # A tibble: 19 x 7
## rowid rsq rmse mae rBias n_obs run_name
## <int> <dbl> <dbl> <dbl> <dbl> <int> <chr>
## 1 8 0.827 0.0233 0.0160 -0.0134 6850 FP_2021-11-15-1224
## 2 9 0.816 0.0244 0.0163 0.0148 6850 FP_2021-11-15-1225
## 3 10 0.818 0.0247 0.0176 -0.0754 6370 FP_2021-11-15-1226
## 4 7 0.818 0.0248 0.0176 -0.0676 6376 FP_2021-11-15-1223
## 5 13 0.817 0.0249 0.0177 -0.0894 6359 FP_SMC60_6__2021-11-12-1230
## 6 11 0.824 0.0251 0.0178 -0.0611 6160 FP_4__2021-11-12-1222
## 7 19 0.814 0.0253 0.0181 0.00377 6370 Mean_SMC60_12__2021-11-12-1255
## 8 6 0.806 0.0258 0.0184 -0.110 6286 Extent_SMC60_9__2021-11-12-1242
## 9 4 0.814 0.0258 0.0183 -0.0799 6077 Extent_7__2021-11-12-1234
## 10 16 0.817 0.0259 0.0174 0.0801 6640 Max_SMC60_15__2021-11-12-1307
## 11 12 0.826 0.0259 0.0179 -0.0500 6362 FP_SMC20_5__2021-11-12-1226
## 12 17 0.819 0.0263 0.0185 0.0300 6212 Mean_10__2021-11-12-1246
## 13 14 0.818 0.0265 0.0176 0.0969 6597 Max_13__2021-11-12-1259
## 14 5 0.816 0.0265 0.0184 -0.0688 6281 Extent_SMC20_8__2021-11-12-1238
## 15 15 0.818 0.0270 0.0178 0.103 6639 Max_SMC20_14__2021-11-12-1303
## 16 18 0.821 0.0275 0.0187 0.0420 6291 Mean_SMC20_11__2021-11-12-1250
## 17 3 0.818 0.0285 0.0194 0.221 6682 DWD_SMC60_3__2021-11-12-1218
## 18 1 0.821 0.0297 0.0198 0.239 6656 DWD_1__2021-11-12-1209
## 19 2 0.826 0.0309 0.0202 0.252 6643 DWD_SMC20_2__2021-11-12-1213
rbias negative model underestimation and positive the predictions are overestimated
metrics_ROTH_rain <- pbapply::pbsapply(1:48, function(i)
get_accuracy(obs_vec = ROTH_SCOPEinput$ET_clean,
predictions = Pred_ETcor_ROTH,
metric_function = yardstick::metric_set(yardstick::rsq,
yardstick::rmse,
yardstick::mae),
Filter = T,
timestamp = REddyProc::BerkeleyJulianDateToPOSIXct(ROTH_SCOPEinput$t),
month_start = 1,
month_end = 12,
period = c("night", "day", "dawn_dusk"), # "day", c("night", "day", "dawn_dusk"),
nu_interations = nu_interations_ROTH,
interations = 100, # 5 interaction
dryhours_vec = ROTH_SCOPEinput$dry_hours, #rain_cond_vec,
dry_hours = i,
neg_vec = ifelse(ROTH_SCOPEinput$ET_clean < 0, 0, 1),
neg_null = 1,
pred_neg = 0,
neg_values = NA,
lat = 52.46,
lon = 13.32))
rowid_to_column(tibble(data.frame(metrics_ROTH_rain[,24]))) %>%
mutate(inputs = sapply(1:length(SCOPE_parameters_ROTH), FUN = function(i) (SCOPE_parameters_ROTH[[i]][2,2])) %>%
str_replace("DWD_ROTH_", "")) %>%
arrange(.[[3]]) %>%
select(c(7,1,2,3,4,5,6)) %>%
print(n=19)
## # A tibble: 19 x 7
## inputs rowid rsq rmse mae rBias n_obs
## <chr> <int> <dbl> <dbl> <dbl> <dbl> <int>
## 1 FP_2021-11-15-1224 8 0.827 0.0233 0.0160 -0.0134 6850
## 2 FP_2021-11-15-1225 9 0.816 0.0244 0.0163 0.0148 6850
## 3 FP_2021-11-15-1226 10 0.818 0.0247 0.0176 -0.0754 6370
## 4 FP_2021-11-15-1223 7 0.818 0.0248 0.0176 -0.0676 6376
## 5 FP_SMC60_6__2021-11-12-1230 13 0.817 0.0249 0.0177 -0.0894 6359
## 6 FP_4__2021-11-12-1222 11 0.824 0.0251 0.0178 -0.0611 6160
## 7 Mean_SMC60_12__2021-11-12-1255 19 0.814 0.0253 0.0181 0.00377 6370
## 8 Extent_SMC60_9__2021-11-12-1242 6 0.806 0.0258 0.0184 -0.110 6286
## 9 Extent_7__2021-11-12-1234 4 0.814 0.0258 0.0183 -0.0799 6077
## 10 Max_SMC60_15__2021-11-12-1307 16 0.817 0.0259 0.0174 0.0801 6640
## 11 FP_SMC20_5__2021-11-12-1226 12 0.826 0.0259 0.0179 -0.0500 6362
## 12 Mean_10__2021-11-12-1246 17 0.819 0.0263 0.0185 0.0300 6212
## 13 Max_13__2021-11-12-1259 14 0.818 0.0265 0.0176 0.0969 6597
## 14 Extent_SMC20_8__2021-11-12-1238 5 0.816 0.0265 0.0184 -0.0688 6281
## 15 Max_SMC20_14__2021-11-12-1303 15 0.818 0.0270 0.0178 0.103 6639
## 16 Mean_SMC20_11__2021-11-12-1250 18 0.821 0.0275 0.0187 0.0420 6291
## 17 DWD_SMC60_3__2021-11-12-1218 3 0.818 0.0285 0.0194 0.221 6682
## 18 DWD_1__2021-11-12-1209 1 0.821 0.0297 0.0198 0.239 6656
## 19 DWD_SMC20_2__2021-11-12-1213 2 0.826 0.0309 0.0202 0.252 6643
tibble(data.frame(t(data.frame(metrics_ROTH_rain[1,])))) %>%
set_names(sapply(1:length(SCOPE_parameters_ROTH), FUN = function(i) (SCOPE_parameters_ROTH[[i]][2,2])) %>%
str_replace("DWD_ROTH_", "")) %>%
gather() %>%
mutate(hours = rep(1:48,length(metrics_ROTH_rain[[1]]))) %>%
ggplot(aes(x = hours, y = value, colour = factor(key))) +
geom_line(size = 1.2) +
scale_y_continuous(breaks=seq(0.7,0.86,0.02)) +
scale_x_continuous(breaks=seq(0,48,2)) +
labs(x = "hours without rain", y ='Rsquare') +
theme_classic()
tibble(data.frame(t(data.frame(metrics_ROTH_rain[2,])))) %>%
set_names(sapply(1:length(SCOPE_parameters_ROTH), FUN = function(i) (SCOPE_parameters_ROTH[[i]][2,2])) %>%
str_replace("DWD_ROTH_", "")) %>%
gather() %>%
mutate(hours = rep(1:48,length(metrics_ROTH_rain[[1]]))) %>%
ggplot(aes(x = hours, y = value, colour = factor(key))) +
geom_line(size = 1.2) +
scale_y_continuous(breaks=seq(0.022,0.38,0.002)) +
scale_x_continuous(breaks=seq(0,48,2)) +
labs(x = "hours without rain", y ='RMSE') +
theme_classic()
tibble(data.frame(t(data.frame(metrics_ROTH_rain[4,])))) %>%
set_names(sapply(1:length(SCOPE_parameters_ROTH), FUN = function(i) (SCOPE_parameters_ROTH[[i]][2,2])) %>%
str_replace("DWD_ROTH_", "")) %>%
gather() %>%
mutate(hours = rep(1:48,length(metrics_ROTH_rain[[1]]))) %>%
ggplot(aes(x = hours, y = value, colour = factor(key))) +
geom_line(size = 1.2) +
geom_hline(yintercept = 0, linetype="dotted", colour="red") +
scale_y_continuous(breaks=seq(-0.3,0.3,0.05)) +
scale_x_continuous(breaks=seq(0,48,2)) +
labs(x = "hours without rain", y ='rBias') +
theme_classic()
outputs_var %>% filter(simulation_file == "reflectance.csv")
## # A tibble: 1 x 5
## variable_name unit description simulation_file setting
## <chr> <chr> <chr> <chr> <chr>
## 1 Lo_ * pi / (Esun_ + Esky_) - fraction of radiati~ reflectance.csv save_sp~
reflectance <- get_reflectance(SCOPE_dir = "D:/SCOPE-master/",
Simulation_Name = "work_shop_")
ggplot() +
geom_line(aes(y = reflectance[[2]]$X16, x = reflectance[[2]]$nm), colour="green") +
geom_line(aes(y = reflectance[[2]]$X333, x = reflectance[[2]]$nm), colour="darkgreen")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.