View source: R/significance_pipeline.R
autoplot.interaction_table | R Documentation |
Makes a diagnostic plot of an interaction_table
## S3 method for class 'interaction_table' autoplot( object, OTU_stat, type = "num_int", cutoff_type = "q", abundance_type = "mean", ... )
object |
An |
OTU_stat |
OTU statistics obtained from the function OTU_stats |
type |
One of the following:
|
cutoff_type |
One of the following:
This parameter is ignored if |
abundance_type |
The type of abundance to use in the plots. One of |
... |
Currently ignored |
Note that if type='sim_cor'
, a column named sign
, indicating the sign of the interaction,
is available even though the plotting function does not use this feature.
A ggplot object showing the desired diagnostic plot
library(micInt) data("seawater") sim.scores <- similarity_measures(subset= c("spearman","pearson")) res <- runAnalysis(OTU_table = seawater,sim.scores = sim.scores, returnVariables = 'ccrepe_res',iterations = 100,parallel = FALSE) int_table <- create_interaction_table(res$ccrepe_res$spearman$res) stats <- OTU_stats(seawater) autoplot(int_table,stats,type = "ab_prod",cutoff_type = "p",abundance_type = "max")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.