## ---- echo = FALSE, message = FALSE-------------------------------------------
knitr::opts_chunk$set(prompt = TRUE, highlight = F, background = '#FFFFFF',
collapse = T, comment = "#>")
library(missingHE)
set.seed(1234)
## ----menss_data2, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
MenSS2 <- MenSS
MenSS2$e <- MenSS$sex_inst
#first 10 entries of e
head(MenSS2$e, n = 10)
## ----hist_sex, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'----
par(mfrow=c(1,2))
hist(MenSS2$e[MenSS2$t==1], main = "N sex instances - Control")
hist(MenSS2$e[MenSS2$t==2], main = "N sex instances - Intervention")
## ----mv, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
#proportions of missing values in the control group
sum(is.na(MenSS2$e[MenSS$t==1])) / length(MenSS2$e[MenSS$t==1])
#proportions of missing values in the intervention group
sum(is.na(MenSS2$e[MenSS$t==2])) / length(MenSS2$e[MenSS$t==2])
## ----costs_const, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
MenSS2$c <- MenSS2$c + 0.01
## ----selection1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
PG.sel=selection(data = MenSS2, model.eff = e ~ sex_inst.0, model.cost = c ~ 1,
model.me = me ~ age + ethnicity + employment,
model.mc = mc ~ age + ethnicity + employment, type = "MAR",
n.iter = 1000, dist_e = "pois", dist_c = "gamma")
## ----selection1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
# PG.sel=selection(data = MenSS2, model.eff = e ~ sex_inst.0, model.cost = c ~ 1,
# model.me = me ~ age + ethnicity + employment,
# model.mc = mc ~ age + ethnicity + employment, type = "MAR",
# n.iter = 1000, dist_e = "pois", dist_c = "gamma")
## ----plot_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE, fig.width=15,fig.height=9,out.width='65%',fig.align='center'----
plot(PG.sel, outcome = "effects")
## ----coef_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
coef(PG.sel, prob = c(0.05, 0.95))
## ----summary_selection1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
summary(PG.sel)
## ----pattern1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
PG.pat=pattern(data = MenSS2, model.eff = e ~ sex_inst.0 + (1 | site),
model.cost = c ~ 1 + (1 | site), type = "MAR", restriction = "AC",
n.iter = 1000, Delta_e = 0, Delta_c = 0, dist_e = "pois", dist_c = "gamma")
## ----pattern1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
# PG.pat=pattern(data = MenSS2, model.eff = e ~ sex_inst.0 + (1 | site),
# model.cost = c ~ 1 + (1 | site), type = "MAR", restriction = "AC",
# n.iter = 1000, Delta_e = 0, Delta_c = 0, dist_e = "pois", dist_c = "gamma")
## ----coef_pattern1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
coef(PG.pat, random = TRUE)
## ----prior_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
my.prior <- list(
"alpha0.prior" = c(0 , 0.0000001),
"alpha.prior" = c(0, 0.0000001),
"beta0.prior" = c(0, 0.0000001),
"gamma0.prior.c"= c(0, 1),
"gamma.prior.c" = c(0, 0.01),
"mu.b0.prior" = c(0, 0.001),
"mu.g0.prior.c"= c(0, 0.001),
"s.b0.prior" = c(0, 100),
"s.g0.prior.c"= c(0, 100),
"sigma.prior.c" = c(0, 10000)
)
## ----hurdle1_no, eval=TRUE, echo=FALSE, include=FALSE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
#remove added constant from costs
#MenSS2$c <- MenSS2$c - 0.01
PG.hur=hurdle(data = MenSS2, model.eff = e ~ sex_inst.0, model.cost = c ~ 1 + (1 | site),
model.se = se ~ 1, model.sc = sc ~ age + (1 | site), type = "SAR", se = 1, sc = 0,
n.iter = 1000, dist_e = "pois", dist_c = "gamma", prior = my.prior)
## ----hurdle1, eval=FALSE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
# #remove added constant from costs
# #MenSS2$c <- MenSS2$c - 0.01
#
# PG.hur=hurdle(data = MenSS2, model.eff = e ~ sex_inst.0, model.cost = c ~ 1 + (1 | site),
# model.se = se ~ 1, model.sc = sc ~ age + (1 | site), type = "SAR", se = NULL, sc = 0,
# n.iter = 1000, dist_e = "pois", dist_c = "gamma", prior = my.prior)
## ----coef_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
coef(PG.hur, random = FALSE)
## ----summary_hurdle1, eval=TRUE, echo=TRUE, comment=NA,warning=FALSE,error=FALSE,message=FALSE----
coef(PG.hur, random = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.