MCM.Weib <-
function () {
# Likelihood using trick of zeros
for (i in 1:N) {
# Incidence part
logit(pi[i]) <- inprod(gamma[1:ncW], W[i, 1:ncW])
class[i] ~ dbern(pi[i])
# Latency part
etaBaseline[i] <- inprod(alpha[1:ncZ], Z[i, 1:ncZ])
log_S1[i] <- -exp(etaBaseline[i]) * pow(Time[i], shape)
log_h1[i] <- log(shape) + (shape - 1) * log(Time[i]) + etaBaseline[i]
logL[i] <- class[i] * log(pi[i]) + class[i] * delta[i] * log_h1[i] + class[i] * log_S1[i] + (1 - delta[i]) * (1 - class[i]) * log(1 - pi[i])
zeros[i] ~ dpois(mlogL[i])
mlogL[i] <- -logL[i] + C
}
# Latency priors
alpha[1:ncZ] ~ dmnorm(priorMean.alpha[], priorTau.alpha[, ])
shape ~ dgamma(priorA.shape,priorB.shape)
# Incidence priors
gamma[1:ncW] ~ dmnorm(priorMean.gamma[], priorTau.gamma[, ])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.