# NLSProbName: Chloride_1.R
# NLSProbDescription: { The Chloride data frame has 54 rows and 2 columns representing measurements of the chloride
# ion concentration in blood cells suspended in a salt solution.
# The two columns are:
# `conc`: A numeric vector giving the chloride ion concentration (%).
# `time`: A numeric vector giving the time of the concentration measurement (min).
# }
# Use the Chloride data from NRAIA package
## DATA
conc = c(17.3, 17.6, 17.9, 18.3, 18.5, 18.9, 19.0, 19.3, 19.8,
19.9, 20.2, 20.5, 20.6, 21.1, 21.5, 21.9, 22.0, 22.3,
22.6, 22.8, 23.0, 23.2, 23.4, 23.7, 24.0, 24.2, 24.5,
25.0, 25.4, 25.5, 25.9, 25.9, 26.3, 26.2, 26.5, 26.5,
26.6, 27.0, 27.0, 27.0, 27.0, 27.3, 27.8, 28.1, 28.1,
28.1, 28.4, 28.6, 29.0, 29.2, 29.3, 29.4, 29.4, 29.4)
time = c(2.45, 2.55, 2.65, 2.75, 2.85, 2.95, 3.05, 3.15, 3.25,
3.35, 3.45, 3.55, 3.65, 3.75, 3.85, 3.95, 4.05, 4.15,
4.25, 4.35, 4.45, 4.55, 4.65, 4.75, 4.85, 4.95, 5.05,
5.15, 5.25, 5.35, 5.45, 5.55, 5.65, 5.75, 5.85, 5.95,
6.05, 6.15, 6.25, 6.35, 6.45, 6.55, 6.65, 6.75, 6.85,
6.95, 7.05, 7.15, 7.25, 7.35, 7.45, 7.55, 7.65, 7.75)
NLStestdata <- data.frame(conc,time)
## STARTING VALUE
Asym = 50
prop=0.6
lrc = log(0.25)
NLSstart <-c(Asym = Asym, prop=prop, lrc = lrc) # a starting vector (named!)
## MODEL
NLSformula <- conc ~ Asym*(1 - prop*exp(-exp(lrc)*time))
NLSlower <- NULL
NLSupper <- NULL
NLSrunline <- "(formula=NLSformula, data=NLStestdata, start=NLSstart)"
output_nls <- eval(parse(text=paste("nls",NLSrunline))) # nls is our benchmark case
output_nlsj <- eval(parse(text=paste("nlsj::nlsj",NLSrunline))) # nlsj is the new nls
## Test expectations using testthat
library(testthat) # comment out later!!
#### TESTING nls VS nlsj
# SETTING TOLERANCE
epstol <- sqrt(.Machine$double.eps*100) # Can replace 100 with nls.control()$offset
# NLSout/expout has "m", "convInfo", "data", "call",
# "dataClasses", "control"
## testing m values: "resid" "fitted" "formula" "deviance" "lhs"
# "gradient" "conv" "incr" "setVarying" "setPars"
# "getPars" "getAllPars" "getEnv" "trace" "Rmat"
# "predict"
test_that("testing m objects",{ #FAILED
# residuals
expect_equal(as.vector(resid(output_nls)),
as.vector(resid(output_nlsj)),
tolerance=epstol*(max(abs(c(as.vector(resid(output_nls)),
as.vector(resid(output_nlsj)))
)) + epstol))
# # fitted
# expect_equal(as.vector(fitted(output_nls)),
# as.vector(fitted(output_nlsj)))
# # formula
# expect_equal(formula(output_nls),
# formula(output_nlsj))
# deviance
expect_equal(deviance(output_nls),
deviance(output_nlsj),
tolerance=epstol*(max(abs(c(deviance(output_nls),
deviance(output_nlsj))
)) + epstol))
# gradient
expect_equal( output_nls$m$gradient(),
attr(output_nlsj$m$resid(),"gradient"),
tolerance=epstol*(max(abs(c(output_nls$m$gradient(),
attr(output_nlsj$m$resid(),"gradient"))
)) + epstol))
# # conv
# expect_equal( output_nls$m$conv(),
# output_nlsj$m$conv())
# # incr
# expect_equal( output_nls$m$incr(),
# output_nlsj$m$incr())
# # getPars # difference between getAllPars adn getPars?
expect_equal( output_nls$m$getPars(),
output_nlsj$m$getPars())
# # getEnv
# expect_equal( output_nls$m$igetEnv(),
# output_nlsj$m$getEnv())
# # trace
# ##expect_equal( output_nls$m$trace(), ## Not run as it prints(devaince,conv,pars)
# ## output_nlsj$m$trace())
# Rmat
expect_equal( output_nls$m$Rmat(),
output_nlsj$m$Rmat(),
tolerance=epstol*(max(abs(c(output_nls$m$Rmat(),
output_nls$m$Rmat())
)) + epstol))
# # predict
# expect_equal( output_nls$m$predict(),
# output_nlsj$m$predict())
}
)
## testing control #FAILED
#test_that("testing control list items",{
# expect_equal(output_nls$control,
# output_nlsj$control)
# }
#)
# testing convInfo # FAILED
test_that("testing conInfo list items",{
expect_equal(as.numeric(output_nls$convInfo$isConv),
as.numeric(output_nlsj$convInfo))
}
)
#rm(conc,time, Asym, prop, lrc)
#rm("NLSformula","NLSrunline","NLSstart","NLStestdata",
# "NLSupper","NLSlower","output_nls","output_nlsj","epstol")
print("End of test file 'Chloride_1.R' ")
#-----------------------------------------#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.