tests/testthat/test-Hobbs_1.R

# NLSProbName: Tetra_1.R
# NLSProbDescription: {The Hobbs weed infestation problem to estimate a 
#    3-parameter logistic S curve in its unscaled form from a reasonably
#    easy starting point of (200, 50, 0.3)
# }


## DATA
y=c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
          38.558, 50.156, 62.948, 75.995, 91.972)
tt=1:12
NLStestdata <- data.frame(y,tt)

## STARTING VALUE
b1=200
b2=50
b3=0.3
NLSstart <-c(b1=b1, b2=b2, b3=b3) # a starting vector (named!)

## MODEL
NLSformula <- y ~ b1/(1+b2*exp(-b3*tt))
NLSlower <- NULL
NLSupper <- NULL
NLSrunline <- "(formula=NLSformula, data=NLStestdata, start=NLSstart)"
output_nls <- eval(parse(text=paste("nls",NLSrunline))) # nls is our benchmark case
output_nlsj <- eval(parse(text=paste("nlsj::nlsj",NLSrunline))) # nlsj is the new nls

## Test expectations using testthat
#library(testthat) # comment out later!!

#### TESTING nls VS nlsj
# SETTING TOLERANCE
epstol <- sqrt(.Machine$double.eps*100) # Can replace 100 with nls.control()$offset

# NLSout/expout has "m", "convInfo", "data", "call",
# "dataClasses", "control"

## testing m values:  "resid"      "fitted"     "formula"    "deviance"   "lhs"       
# "gradient"   "conv"       "incr"       "setVarying" "setPars"   
# "getPars"    "getAllPars" "getEnv"     "trace"      "Rmat"      
# "predict"

test_that("testing m objects",{ #FAILED
      # residuals
	expect_equal(as.vector(resid(output_nls)),
			 as.vector(resid(output_nlsj)),
		    tolerance=epstol*(max(abs(c(as.vector(resid(output_nls)),
					as.vector(resid(output_nlsj)))
					)) + epstol))

#	# fitted
#	expect_equal(as.vector(fitted(output_nls)),
#			 as.vector(fitted(output_nlsj)))
#	# formula
#	expect_equal(formula(output_nls),
#			 formula(output_nlsj))
	# deviance
	expect_equal(deviance(output_nls),
			 deviance(output_nlsj),
		    tolerance=epstol*(max(abs(c(deviance(output_nls),
					deviance(output_nlsj))
					)) + epstol))
	# gradient
	expect_equal( output_nls$m$gradient(),
			   attr(output_nlsj$m$resid(),"gradient"),
		    tolerance=epstol*(max(abs(c(output_nls$m$gradient(),
					 attr(output_nlsj$m$resid(),"gradient"))
					)) + epstol))
#	# conv
#	expect_equal( output_nls$m$conv(),
#			  output_nlsj$m$conv())
#	# incr
#	expect_equal( output_nls$m$incr(),
#			  output_nlsj$m$incr())
#	# getPars # difference between getAllPars adn getPars?
	expect_equal( output_nls$m$getPars(),
			  output_nlsj$m$getPars())
#	# getEnv
#	expect_equal( output_nls$m$igetEnv(),
#			  output_nlsj$m$getEnv())
#	# trace 
#	##expect_equal( output_nls$m$trace(), ## Not run as it prints(devaince,conv,pars)
#	##		  output_nlsj$m$trace())	
	# Rmat
	expect_equal( output_nls$m$Rmat(),
			  output_nlsj$m$Rmat(),
		    tolerance=epstol*(max(abs(c(output_nls$m$Rmat(),
					output_nls$m$Rmat())
					)) + epstol))

#	# predict
#	expect_equal( output_nls$m$predict(),
#			  output_nlsj$m$predict())
	}
)

## testing control #FAILED
#test_that("testing control list items",{
#		expect_equal(output_nls$control,
#				 output_nlsj$control)
#	}
#)

# testing convInfo # FAILED
test_that("testing conInfo list items",{
		expect_equal(as.numeric(output_nls$convInfo$isConv),
			 as.numeric(output_nlsj$convInfo))
	}
)

#rm(y,tt)

#rm("NLSformula","NLSrunline","NLSstart","NLStestdata",
#	"NLSupper","NLSlower","output_nls","output_nlsj","epstol")
print("End of test file 'Hobbs_1.R' ")
#-----------------------------------------#
ArkaB-DS/nlsj documentation built on Dec. 17, 2021, 9:43 a.m.