library(tidyverse)
library(torch)
library(torchaudio)
library(mestrado)
library(tensorflow)
create_mfcc_dataset <- function(
tamanho_dos_audios,
samples_per_window = 512L,
stride_samples = 0.5,
num_mel_bins = 64L,
num_mfccs = 13L,
sampling_rate = 16000L,
seed = 1
) {
tamanho_dos_audios = 1
samples_per_window = 512L
stride_samples = 0.5
num_mel_bins = 64L
num_mfccs = 13L
sampling_rate = 16000L
seed = 1
set.seed(seed)
tamanho_dos_audios_em_ms <- tamanho_dos_audios * 1000L
stride_samples <- as.integer((1-stride_samples) * samples_per_window)
df <- readr::read_rds(glue::glue("data_/slices_{tamanho_dos_audios_em_ms}ms_labels_by_humans.rds")) %>%
dplyr::mutate(
fname = fs::as_fs_path(paste0(glue::glue("data-raw/wav_16khz_{tamanho_dos_audios_em_ms}ms/"), slice_id)),
flag = case_when(
label %in% "Glaucidium-minutissimum" ~ 1L,
label %in% "Strix-hylophila" ~ 2L,
TRUE ~ 0L
)
)
nrow_df <- nrow(df)
divisors_of_nrow <- numbers::divisors(nrow_df)
batch_size <- 1
num_categs <- as.integer(n_distinct(df$flag))
lower_edge_hertz <- 0
upper_edge_hertz <- linear_to_mel_frequency(sampling_rate / 2)
range <- torch_arange(
samples_per_window %/% 2L,
as.integer(tamanho_dos_audios*sampling_rate) - samples_per_window %/% 2L,
stride_samples
)
n_fft_coefs <- as.integer(2^ceiling(log(samples_per_window)/log(2))/2 + 1)
n_periods <- length(range) + 2
# read mp3
obs <- df[1, ]
wav <- tuneR::readWave(as.character(obs$fname)) %>% tidy_audio(sample_rate = sampling_rate)
stft_out <- spectrogram(
torch_tensor(as.numeric(wav@left)/(2^(wav@bit - 1))),
n_fft = samples_per_window,
hop_length = (stride_samples),
window = torch_hann_window(samples_per_window, dtype = torch:::dtype_from_string("float")),
center = FALSE,
normalized = FALSE,
power = 2
)
magnitude_spectrograms <- sqrt(stft_out)
plot((as.numeric(magnitude_spectrograms$t())), as.numeric(tf$squeeze(magnitude_spectrograms2)))
lm(sqrt(as.numeric(stft_out$t())) ~ as.numeric(tf$squeeze(magnitude_spectrograms2)))
log_magnitude_spectrograms <- log(magnitude_spectrograms + 1e-6)
# plot_spectrogram_matrix(log_magnitude_spectrograms)
linear_to_mel_weight_matrix <- create_fb_matrix(
n_mels = num_mel_bins,
n_freqs = n_fft_coefs,
sample_rate = sampling_rate,
f_min = lower_edge_hertz,
f_max = upper_edge_hertz
)
mel_spectrograms <- torch_mm(
magnitude_spectrograms$transpose(1L, 2L),
linear_to_mel_weight_matrix
)
plot_spectrogram_matrix(magnitude_spectrograms)
plot_spectrogram_matrix(tf$squeeze(magnitude_spectrograms2))
plot_spectrogram_matrix(linear_to_mel_weight_matrix)
plot_spectrogram_matrix(tf$squeeze(linear_to_mel_weight_matrix2))
plot_spectrogram_matrix(mel_spectrograms)
plot_spectrogram_matrix(tf$squeeze(mel_spectrograms2))
plot(as.numeric(mel_spectrograms), (as.numeric(tf$squeeze(mel_spectrograms2))))
abline(0, 1, col = "red")
hist(as.numeric(mel_spectrograms) - (as.numeric(tf$squeeze(mel_spectrograms2))*152365.85 + 18.28), breaks = 100)
lm(as.numeric(mel_spectrograms) ~ as.numeric(tf$squeeze(mel_spectrograms2)))
log_mel_spectrograms <- log(mel_spectrograms + 1e-6)
plot_spectrogram_matrix(log_mel_spectrograms)
plot_spectrogram_matrix(tf$squeeze(log_mel_spectrograms2))
plot(as.numeric(log_mel_spectrograms), as.numeric(tf$squeeze(log_mel_spectrograms2)))
dct_mat <- create_dct(n_mfcc = num_mfccs, n_mels = num_mel_bins, norm = 'ortho')
mfccs <- torch_matmul(log_mel_spectrograms,dct_mat)
mfccs2 <- tf$signal$mfccs_from_log_mel_spectrograms(log_mel_spectrograms2)[ , , 1:num_mfccs]
mfcc3 <- tuneR::melfcc(samples = wav, wintime = samples_per_window/16000, hoptime = samples_per_window/16000/2, sr = 16000, numcep = 13)
plot(as.numeric(mfccs), as.numeric(tf$squeeze(mfccs2)))
plot(as.numeric(mfccs), as.numeric((mfcc3[nrow(mfcc3):1, ncol(mfcc3):1])))
plot(as.numeric(mfcc3), as.numeric(tf$squeeze(mfccs2)))
plot_spectrogram_matrix(dct_mat)
plot_spectrogram_matrix(mfccs)
plot_spectrogram_matrix(tf$squeeze(mfccs2))
plot_spectrogram_matrix(as.array(tf$squeeze(mfccs2))/as.array(mfccs))
response <- torch::nnf_one_hot(obs$flag, num_categs)
input <- response
# full mfcc dataset
obs <- lapply(df[1,], tf$convert_to_tensor)
ds <- tfdatasets::tensor_slices_dataset(df) %>%
tfdatasets::dataset_map(function(obs) {
obs2 <- lapply(df[1,], tf$convert_to_tensor)
wav2 <- tf$audio$decode_wav(tf$io$read_file(tf$reshape(obs2$fname, list())), desired_channels = 1L)
samples <- wav2$audio
samples <- samples %>% tf$transpose(perm = c(1L, 0L))
stft_out2 <- tf$signal$stft(samples,
frame_length = as.integer(samples_per_window),
frame_step = as.integer(stride_samples))
magnitude_spectrograms2 <- tf$abs(stft_out2)
log_magnitude_spectrograms2 <- tf$math$log(magnitude_spectrograms2 + 1e-6)
# plot_spectrogram_matrix(t(array(as.array(log_magnitude_spectrograms), dim = c(5843, 257))))
response2 <- tf$one_hot(obs2$flag, num_categs)
input2 <- tf$transpose(log_magnitude_spectrograms2, perm = c(1L, 2L, 0L))
linear_to_mel_weight_matrix2 <- tf$signal$linear_to_mel_weight_matrix(
num_mel_bins,
num_spectrogram_bins = n_fft_coefs,
sample_rate = sampling_rate,
lower_edge_hertz = lower_edge_hertz,
upper_edge_hertz = upper_edge_hertz
)
mel_spectrograms2 <- tf$tensordot(magnitude_spectrograms2,
linear_to_mel_weight_matrix2,
1L)
log_mel_spectrograms2 <- tf$math$log(mel_spectrograms2 + 1e-6)
mfccs2 <- tf$signal$mfccs_from_log_mel_spectrograms(log_mel_spectrograms2)[ , , 1:num_mfccs]
input2 <- tf$transpose(mfccs2, perm = c(1L, 2L, 0L))
# fname <- tf$reshape(obs$fname, list())
slice_id2 <- tf$reshape(obs$slice_id, list())
list(input2, response2, slice_id2)
}) %>%
dataset_batch(batch_size, TRUE)
ds <- make_iterator_one_shot(ds)
.x = iterator_get_next(ds)
pb <- progress::progress_bar$new(total = nrow(df)/batch_size -1)
for(i in seq(nrow_df/batch_size -1)) {
pb$tick()
next_ <- iterator_get_next(ds)
size <- next_[[1]]$get_shape()[[1]]
paddings = tf$constant(c(c(0L, 0L),
c(0L, n_periods$numpy() - 2L - size),
c(0L, 0L),
c(0L, 0L)), shape = c(4L, 2L))
browser()
if(dim(next_[[1]])[2] < 124) next_[[1]] <- tf$pad(next_[[1]], paddings, "CONSTANT")
.x = list(
tf$concat(list(.x[[1]], next_[[1]]), 0L),
tf$concat(list(.x[[2]], next_[[2]]), 0L),
tf$concat(list(.x[[3]], next_[[3]]), 0L)
)
}
.x = list(
.x[[1]]$numpy(),
.x[[2]]$numpy(),
map_chr(.x[[3]]$numpy(), as.character)
)
ds_path = glue::glue("data/mfcc_{tamanho_dos_audios_em_ms}ms.rds")
write_rds(.x, path = ds_path)
ds_path
}
create_mfcc_dataset(2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.