predict_true_entropy_from_diversity: predict_true_entropy_from_diversity

View source: R/diversity_fxns.R

predict_true_entropy_from_diversityR Documentation

predict_true_entropy_from_diversity

Description

Uses an elastic net model to predict true Shannon entropy (ie Shannon entropy at an abundance of 100 million). Two models are used to cover different abundance ranges. 2-1024 is one model 1025-65536 is another. Lastly, if the abundance and Shannon entropy are over a threshhold predetermined to produce results within 95

Usage

predict_true_entropy_from_diversity(
  my_abundance,
  my_richness,
  my_d25,
  my_inv_simpson,
  my_chao1,
  my_shannon_entropy,
  my_evenness,
  min_abundance = 2,
  should_screen_counts = TRUE
)

Arguments

my_abundance

Numeric. Sum of counts for a population. For T/BCR this would be total reads for the chain.

my_richness

Numeric. Number of species or clonotypes.

my_d25

Numeric. dXX_index

my_inv_simpson

Numeric. inv_simpson

my_chao1

Numeric. chao1

my_shannon_entropy

Numeric. shannon_entropy

my_evenness

Numeric. evenness

min_abundance

Integer to indicate minimun number of counts needed (ie. sum(my_counts)) to get a valid prediction.

should_screen_counts

Boolean to indicate if the coutns should be screened for valid data. Set to false if the data has already been checked by another function.

Value

Modeled prediction of diversity

See Also

Other diversity: chao1(), dXX_index(), evenness(), get_corrected_entropy_rdata_2_4096_path(), get_corrected_entropy_rdata_4097_65536_path(), get_corrected_entropy_rdata_ab1025_65K_ent1_8_path(), get_corrected_entropy_rdata_ab8_1024_ent1_8_path(), has_sufficient_abundance_for_entropy(), inv_simpson(), predict_true_entropy_from_counts(), screen_counts(), shannon_entropy()


Benjamin-Vincent-Lab/binfotron documentation built on Oct. 1, 2024, 8:33 p.m.