# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# screen_counts
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @title screen_counts
#'
#' @param my_counts return valid counts
#'
#' @return Returns couns that are not NA and greater than zero. Factors are
#' converted to numerics correctly.
#'
#' @family diversity
#'
#' @export
screen_counts = function(my_counts){
if(class(my_counts) %in% c("character", "factor")){
warning("Your counts are factors not numbers. This was fixed for diveristy calculations, but this is a huge mistake that should be fixed immediately. Ask someone if you don't know what this warning is talking about.")
my_counts = as.numeric(as.character(my_counts))
} else {
my_counts = as.numeric(my_counts)
}
my_counts = my_counts[!is.na(my_counts)]
my_counts = my_counts[my_counts>0]
return(my_counts)
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# shannon_entropy
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @title shannon_entropy
#'
#' @param my_counts vector of postive integers
#' @param should_screen_counts Boolean to indicate if the coutns should be screened
#' for valid data. Set to false if the data has already been checked by another function.
#'
#' @return Returns \code{vegan::diversity(my_counts, index = "shannon")} of the
#' non-zero counts with NA removed.
#'
#' @family diversity
#'
#' @export
shannon_entropy = function(my_counts, should_screen_counts = TRUE)
#https://stat.ethz.ch/pipermail/r-help/2008-July/167112.html
{
if (should_screen_counts) my_counts %<>% screen_counts()
if (!checkmate::test_numeric(my_counts, lower = 0, min.len = 2)) return(NA)
vegan::diversity(my_counts, index = "shannon")
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# inv_simpson
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# https://stat.ethz.ch/pipermail/r-help/2008-July/167112.html
#' @title inv_simpson
#'
#' @param my_counts vector of postive integers
#' @param should_screen_counts Boolean to indicate if the coutns should be screened
#' for valid data. Set to false if the data has already been checked by another function.
#'
#' @return Returns \code{vegan::diversity(my_counts, index = "invsimpson")} of the
#' non-zero counts with NA removed.
#'
#' @family diversity
#'
#' @export
inv_simpson = function(my_counts, should_screen_counts = TRUE)
#https://stat.ethz.ch/pipermail/r-help/2008-July/167112.html
{
if (should_screen_counts) my_counts %<>% screen_counts()
if (!checkmate::test_numeric(my_counts, lower = 0, min.len = 2)) return(NA)
vegan::diversity(my_counts, index = "invsimpson")
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# chao1
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @title chao1
#'
#' @param my_counts vector of postive integers
#' @param should_screen_counts Boolean to indicate if the coutns should be screened
#' for valid data. Set to false if the data has already been checked by another function.
#'
#' @return Returns \code{vegan::estimateR(round(my_counts))["S.chao1"]} of the
#' non-zero counts with NA removed.
#'
#' @family diversity
#'
#' @export
chao1 = function(my_counts, should_screen_counts = TRUE){
if (should_screen_counts) my_counts %<>% screen_counts()
my_counts = round(my_counts)
class(my_counts) = "integer"
if (!checkmate::test_integer(my_counts, lower = 0, min.len = 2)) return(NA)
my_return = suppressWarnings(vegan::estimateR(my_counts)["S.chao1"] %>% as.numeric())
return(my_return)
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# evenness
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @title evenness
#'
#' @param my_counts vector of postive integers
#'
#' @return Returns \code{shannon_entropy(my_counts)/log(sum(!is.na(my_counts)))}
#' of the non-zero counts with NA removed.
#'
#' @family diversity
#'
#' @export
evenness = function(my_counts, should_screen_counts = TRUE){
if (should_screen_counts) my_counts %<>% screen_counts()
if (!checkmate::test_numeric(my_counts, lower = 0, min.len = 2)) return(NA)
shannon_entropy(my_counts, should_screen_counts = FALSE)/log(sum(!is.na(my_counts)))
}
# This metric seems backwards to me. diversity index should mean a higher number means
# more diversity, but here if one clone account for 50 % of the reads it would be
# really high. if 50% are needed it would be really low
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# dXX_index
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @title dXX_index
#'
#' @description
#' From vdjtools:
#' "The estimate equals to 1 - n / N, where n is the minimum number of clonotypes
#' accounting for at least XX% of the total reads and code N is the total number
#' of clonotypes in the sample. Computes diversity index that equals to one minus
#' the minimum fraction of clonotypes accounting for at least 50% of the total
#' reads."
#'
#' @param my_counts vector of postive integers
#' @param should_screen_counts Boolean to indicate if the coutns should be screened
#' for valid data. Set to false if the data has already been checked by another function.
#'
#' @return Typically called d50_index. Computes the diversity index dXX, where
#' XX is a specified fraction.
#'
#' @family diversity
#'
#' @export
dXX_index = function(my_counts, my_fraction, should_screen_counts = TRUE){
if (should_screen_counts) my_counts %<>% screen_counts()
if (!checkmate::test_numeric(my_counts, lower = 0, min.len = 2)) return(NA)
ordered_counts = sort(my_counts[my_counts > 0], decreasing = T)
min_amount = sum(ordered_counts) * my_fraction
total_clone_number = length(ordered_counts) # N
if(total_clone_number > 0){
min_clone_number = 1 # n
repeat{
if(sum(ordered_counts[1:min_clone_number]) >= min_amount){
break
}
min_clone_number = min_clone_number + 1
}
return(1-min_clone_number/total_clone_number)
} else {
return(NA)
}
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# has_sufficient_abundance_for_entropy
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @title has_sufficient_abundance_for_entropy
#'
#' @description
#' Over the range of TCGA TCR entropies (0.975-8.1) we calculated the minimum number
#' of reads needed to get within the 95th CI of the entropy at 100 billion reads.
#' See Optimize_Diversity_Metrics_CRSV1371 project file, plot_fraction_entropy.R.
#'
#' @param my_abundance Integer of the total abundance of the counts
#' @param measured_entropy Measured entropy of the sample. Value should be close to the
#' range of (0.975-8.1).
#'
#' @return Boolean of whether this abundance is enough to just use the measured entropy
#'
#' @family diversity
#'
#' @export
#'
has_sufficient_abundance_for_entropy = function(my_abundance, measured_entropy){
my_exp = 1.37
min_abundance = (my_exp^((measured_entropy+5)^my_exp)) + 512
if(my_abundance >= min_abundance){
return(TRUE)
} else{
return(FALSE)
}
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# predict_true_entropy_from_diversity
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @title predict_true_entropy_from_diversity
#'
#' @description
#' Uses an elastic net model to predict true Shannon entropy (ie Shannon entropy at an abundance of 100 million). Two models are used to cover different abundance ranges. 2-1024 is one model 1025-65536 is another. Lastly, if the abundance and Shannon entropy are over a threshhold predetermined to produce results within 95% of the true Shannon entropy the data are not modeled and Shannon entropy is returned. Of note these models were trained on an entropy range between 0.98 and 8.11. If your corrected entropy values are often outside of this range this model may not be appropriate for your dataset. If you have counts, consider using the \link[binfotron]{predict_true_entropy_from_counts} instead.
#'
#'
#' @param my_abundance Numeric. Sum of counts for a population. For T/BCR this would be total reads for the chain.
#' @param my_richness Numeric. Number of species or clonotypes.
#' @param my_d25 Numeric. \link[binfotron]{dXX_index}
#' @param my_inv_simpson Numeric. \link[binfotron]{inv_simpson}
#' @param my_chao1 Numeric. \link[binfotron]{chao1}
#' @param my_shannon_entropy Numeric. \link[binfotron]{shannon_entropy}
#' @param my_evenness Numeric. \link[binfotron]{evenness}
#' @param should_screen_counts Boolean to indicate if the coutns should be screened
#' for valid data. Set to false if the data has already been checked by another function.
#' @param min_abundance Integer to indicate minimun number of counts needed (ie. \code{sum(my_counts)})
#' to get a valid prediction.
#'
#' @return Modeled prediction of diversity
#'
#' @family diversity
#'
#' @export
#'
predict_true_entropy_from_diversity = function(
my_abundance,
my_richness,
my_d25,
my_inv_simpson,
my_chao1,
my_shannon_entropy,
my_evenness,
min_abundance = 2,
should_screen_counts = TRUE
){
if (!checkmate::test_numeric(my_abundance, lower = 1, len = 1, any.missing = FALSE)) return(NA)
if (!checkmate::test_numeric(my_richness, lower = 2, len = 1, any.missing = FALSE)) return(NA)
if (!checkmate::test_numeric(my_d25, lower = 0, upper = 1, len = 1, any.missing = FALSE)) return(NA)
if (!checkmate::test_numeric(my_inv_simpson, lower = 1, len = 1, any.missing = FALSE)) return(NA)
if (!checkmate::test_numeric(my_chao1, lower = 1, len = 1, any.missing = FALSE)) return(NA)
if (!checkmate::test_numeric(my_shannon_entropy, lower = 0, len = 1, any.missing = FALSE)) return(NA)
if (!checkmate::test_numeric(my_evenness, lower = 0, upper = 1, len = 1, any.missing = FALSE)) return(NA)
# my_abundance = sum(my_counts)
# my_shannon_entropy = binfotron::shannon_entropy(my_counts, should_screen_counts = FALSE)
#
# 2^16 is the cutoff on the scale of plot_subsampled_diversity_with_corrections.R
if(my_abundance < min_abundance) return(NA)
if(binfotron::has_sufficient_abundance_for_entropy(my_abundance, my_shannon_entropy)) return(my_shannon_entropy)
my_df = data.frame(
Log2_TRB_Abundance = log2(my_abundance + 1),
Log2_TRB_Richness = log2(my_richness + 1),
TRB_d25 = my_d25,
Log2_TRB_Inv_Simpson = log2(my_inv_simpson + 1),
Log2_TRB_Chao1 = log2(my_chao1 + 1),
TRB_Shannon_Entropy = my_shannon_entropy,
TRB_Evenness = my_evenness
)
if(my_abundance <= 1024) {
model_path = binfotron::get_corrected_entropy_rdata_ab8_1024_ent1_8_path()
} else {
model_path = binfotron::get_corrected_entropy_rdata_ab1025_65K_ent1_8_path()
}
load(model_path, verbose = F)
feature_names = row.names(optimal_model$beta)
model_beta = as.matrix(optimal_model$beta)
final_model_input_features = feature_names[abs(model_beta[[1]]) > 0]
if(any(is.na(my_df[1,final_model_input_features]))) { # can't model with missing values
return(NA)
} else {
library(glmnet)
return(predict(optimal_model, as.matrix(my_df[,final_model_input_features]), type = "response") %>% as.numeric())
}
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# predict_true_entropy_from_counts
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @title predict_true_entropy_from_counts
#'
#' @description
#' Uses an elastic net model to predict true Shannon entropy (ie Shannon entropy at an abundance of 100 million). Two models are used to cover different abundance ranges. 2-1024 is one model 1025-65536 is another. Lastly, if the abundance and Shannon entropy are over a threshhold predetermined to produce results within 95% of the true Shannon entropy the data are not modeled and Shannon entropy is returned. Of note these models were trained on an entropy range between 0.98 and 8.11. If your corrected entropy values are often outside of this range this model may not be appropriate for your dataset. Consider using the \link[binfotron]{predict_true_entropy_from_diversity} if you have the following diversity metrics already calculated: abundance, richness, d25, Shannon entropy, evenness, inv_simpson, chao1.
#'
#' @param my_counts vector of postive integers
#' @param should_screen_counts Boolean to indicate if the counts should be screened for valid data. Set to false if the data has already been checked by another function.
#' @param min_abundance Integer to indicate minimun number of counts needed (ie. \code{sum(my_counts)}) to get a valid prediction.
#'
#' @return Modeled prediction of diversity
#'
#' @family diversity
#'
#' @export
#'
predict_true_entropy_from_counts = function(my_counts, min_abundance = 2, should_screen_counts = TRUE){
if (should_screen_counts) my_counts %<>% binfotron::screen_counts()
if (!checkmate::test_numeric(my_counts, lower = 0, min.len = 2)) return(NA)
# add new model
# return na if abundance is over 4096 and below 2^17
# return entropy if abundance is over 2^17
my_abundance = sum(my_counts)
my_shannon_entropy = binfotron::shannon_entropy(my_counts, should_screen_counts = FALSE)
# 2^16 is the cutoff on the scale of plot_subsampled_diversity_with_corrections.R
if(my_abundance < min_abundance) return(NA)
if(binfotron::has_sufficient_abundance_for_entropy(my_abundance, my_shannon_entropy)) return(my_shannon_entropy)
my_df = data.frame(
Log2_TRB_Abundance = log2(my_abundance + 1),
Log2_TRB_Richness = log2(length(my_counts) + 1),
TRB_d25 = binfotron::dXX_index(my_counts, my_fraction = 0.25, should_screen_counts = FALSE),
Log2_TRB_Inv_Simpson = log2(binfotron::inv_simpson(my_counts, should_screen_counts = FALSE) + 1),
Log2_TRB_Chao1 = log2(binfotron::chao1(my_counts, should_screen_counts = FALSE) + 1),
TRB_Shannon_Entropy = my_shannon_entropy,
TRB_Evenness = binfotron::evenness(my_counts, should_screen_counts = FALSE)
)
if(my_abundance <= 1024) {
model_path = binfotron::get_corrected_entropy_rdata_ab8_1024_ent1_8_path()
} else {
model_path = binfotron::get_corrected_entropy_rdata_ab1025_65K_ent1_8_path()
}
load(model_path, verbose = F)
feature_names = row.names(optimal_model$beta)
model_beta = as.matrix(optimal_model$beta)
final_model_input_features = feature_names[abs(model_beta[[1]]) > 0]
if(any(is.na(my_df[1,final_model_input_features]))) { # can't model with missing values
return(NA)
} else {
library(glmnet)
return(predict(optimal_model, as.matrix(my_df[,final_model_input_features]), type = "response") %>% as.numeric())
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.