Man pages for Beuleup93/dgrGlm
Regression logistic binary tools

binary_predictBinary prediction
centering.red.predcentering and reduction of the test set
centering.reductioncentering and reduction
decoupage_colonneColumn Decoupage
decoupage_ligneAlgorithm to cut data
dg_batch_minibatch_online_seqGlobal Gradient descent algorithm
dg_batch_seqGradient descent algorithm
dgrglm.fitFunction fit to construct model
dgrglm.multiclass.fitLogistic regression multiclass
dgrglm.multiclass.predictBinary or probabilities prediction
dgrglm.predictBinary or probabilities prediction
dgs_minibatch_online_parallleBatch Mini & Online DGSRow Distributed
dgsrow_batch_paralleleBatch DGSRow Distributed
dgsrow_minibatch_parallle2MiniBatch DGSRow Distributed
gradientThe gradient of the objective function
gradientElasticnetGradient for Elasticnet Loss Function
logLossLogistic regression cost function
logLossElasticnetTitle
metric_R2coefficient of determination R2
metricsMetrics Function
print.modeleCustomization function of the print method for the model...
print.predictCustomization function of the print method for the predict...
recodage.qualiRecoding target variable
recodage_XRe-coding Features
sigmoidSigmoid Function
summary.modeleCustomization function of the summary method for the modele...
summary.predictCustomization function of the summary method for the predict...
var.selectionFeatures Selection
Beuleup93/dgrGlm documentation built on Dec. 17, 2021, 10:50 a.m.