dg_batch_seq: Gradient descent algorithm

Description Usage Arguments Value Author(s) Examples

View source: R/dg_batch_seq.R

Description

Gradient descent algorithm

Usage

1
dg_batch_seq(X, y, theta, leaning_rate, max_iter, tolerance, rho = NA, C = NA)

Arguments

X

is the matrix of our predictor variables with the bias column

y

is a target variable to predict.

theta

is a vector containing the parameters or coefficient of the logistic to be estimated

leaning_rate

is the learning rate that controls the magnitude of the vector update.

max_iter

is the number of iterations.

tolerance

an additional parameter which specifies the minimum movement allowed for each iteration

rho

hyper parameter which allows arbitration between RDIGE and LASSO.

C

parameter allowing to arbitrate between the penalty and the likelihood in the guidance of the modeling.

Value

this function returns the instance of model with all parameters

Author(s)

"Saliou NDAO salioundao21@gmail.com"

Examples

1
2
3
4
5
## Not run: 
  gradient(X,y,theta)
  gradient(X,y,theta, leaning_rate=0.1, max_iter=100, tolerance=1e-04)

## End(Not run)

Beuleup93/dgrGlm documentation built on Dec. 17, 2021, 10:50 a.m.