Description Usage Arguments Value Examples
This function allows us to create a binary logistic regression model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
formule |
allows you to define the target variable and predictor variables |
data |
the data source containing all the variables specified in the formula |
ncores |
parameters representing the number of cores to be used for parallel execution |
mode_compute |
algorithm mode of execution. thera are "parallel" and "sequentiel" |
leaning_rate |
is the learning rate that controls the magnitude of the vector update |
max_iter |
is the number of iterations |
tolerance |
an additional parameter which specifies the minimum movement allowed for each iteration |
batch_size |
a parameter that specifies the number of observations in each mini-batch. It can significantly affect performance |
random_state |
this parameter defines the seed of the random number generator, use when shuffling to mix observations |
centering |
to center and reduce the variables, by default FALSE |
feature_selection |
parameters indicating the choice to make the selection of variable or not |
p_value |
selection criteria |
rho |
hyper parameter which allows arbitration between RDIGE and LASSO. Elasticnet case. |
C |
parameter allowing to arbitrate between the penalty and the likelihood in the guidance of the modeling.Elasticnet case. |
iselasticnet |
for Elasticnet |
an instance of model
1 2 3 4 5 | ## Not run:
dgrglm.fit(formule, data)
dgrglm.fit(formule, data,ncores=3, mode_compute="parallel")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.