dgrglm.fit: Function fit to construct model

Description Usage Arguments Value Examples

View source: R/dgrglm.fit.R

Description

This function allows us to create a binary logistic regression model

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
dgrglm.fit(
  formule,
  data,
  ncores = NA,
  mode_compute = "parallel",
  leaning_rate = 0.1,
  max_iter = 100,
  tolerance = 1e-04,
  batch_size = NA,
  random_state = 102,
  centering = FALSE,
  feature_selection = FALSE,
  p_value = 0.01,
  rho = 0.1,
  C = 0.1,
  iselasticnet = FALSE
)

Arguments

formule

allows you to define the target variable and predictor variables

data

the data source containing all the variables specified in the formula

ncores

parameters representing the number of cores to be used for parallel execution

mode_compute

algorithm mode of execution. thera are "parallel" and "sequentiel"

leaning_rate

is the learning rate that controls the magnitude of the vector update

max_iter

is the number of iterations

tolerance

an additional parameter which specifies the minimum movement allowed for each iteration

batch_size

a parameter that specifies the number of observations in each mini-batch. It can significantly affect performance

random_state

this parameter defines the seed of the random number generator, use when shuffling to mix observations

centering

to center and reduce the variables, by default FALSE

feature_selection

parameters indicating the choice to make the selection of variable or not

p_value

selection criteria

rho

hyper parameter which allows arbitration between RDIGE and LASSO. Elasticnet case.

C

parameter allowing to arbitrate between the penalty and the likelihood in the guidance of the modeling.Elasticnet case.

iselasticnet

for Elasticnet

Value

an instance of model

Examples

1
2
3
4
5
## Not run: 
 dgrglm.fit(formule, data)
 dgrglm.fit(formule, data,ncores=3, mode_compute="parallel")

## End(Not run)

Beuleup93/dgrGlm documentation built on Dec. 17, 2021, 10:50 a.m.