dgrglm.multiclass.fit: Logistic regression multiclass

Description Usage Arguments Value Examples

View source: R/dgrglm.multiclass.fit.R

Description

This function allows us to create a binary logistic regression model

Usage

1
2
3
4
5
6
7
8
9
dgrglm.multiclass.fit(
  formule,
  data,
  leaning_rate = 0.1,
  max_iter = 3000,
  tolerance = 1e-04,
  random_state = 102,
  centering = FALSE
)

Arguments

formule

allows you to define the target variable and predictor variables

data

the data source containing all the variables specified in the formula

leaning_rate

is the learning rate that controls the magnitude of the vector update

max_iter

is the number of iterations

tolerance

an additional parameter which specifies the minimum movement allowed for each iteration

random_state

this parameter defines the seed of the random number generator, use when shuffling to mix observations

centering

to center and reduce the variables, by default FALSE

Value

an instance of model

Examples

1
2
3
4
## Not run: 
 dgrglm.multiclass.fit(formule, data)

## End(Not run)

Beuleup93/dgrGlm documentation built on Dec. 17, 2021, 10:50 a.m.