Description Usage Arguments Value Examples
View source: R/dgrglm.multiclass.fit.R
This function allows us to create a binary logistic regression model
1 2 3 4 5 6 7 8 9 | dgrglm.multiclass.fit(
formule,
data,
leaning_rate = 0.1,
max_iter = 3000,
tolerance = 1e-04,
random_state = 102,
centering = FALSE
)
|
formule |
allows you to define the target variable and predictor variables |
data |
the data source containing all the variables specified in the formula |
leaning_rate |
is the learning rate that controls the magnitude of the vector update |
max_iter |
is the number of iterations |
tolerance |
an additional parameter which specifies the minimum movement allowed for each iteration |
random_state |
this parameter defines the seed of the random number generator, use when shuffling to mix observations |
centering |
to center and reduce the variables, by default FALSE |
an instance of model
1 2 3 4 | ## Not run:
dgrglm.multiclass.fit(formule, data)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.