learnitdown::learnitdownShinyVersion("2.0.0")
conf <- BioDataScience::config()
library(shiny)
library(learnitdown)
library(BioDataScience2)
a_init <- 3.5
b_init <- -1.5
error_sd <- 0.25
set.seed(42)
reglin <- function(x, a, b)
a + (b * x)
model_data <- tibble::tibble(
x = seq(0, 10, by = 0.25),
y = reglin(x, a = a_init, b = b_init) +
rnorm(n = length(x), sd = error_sd))
ui <- fluidPage(
learnitdownShiny("Ajustement manuel d'un modèle : régression linéaire"),
sidebarLayout(
sidebarPanel(
withMathJax(),
p("$$y(x) = a \\ + \\ b \\ x$$"),
sliderInput("a", label = "a",
value = 0, min = -5, max = 5, step = 0.5),
sliderInput("b", label = "b",
value = 0, min = -5, max = 5, step = 0.5),
hr(),
submitQuitButtons()
),
mainPanel(
plotOutput("model_plot"),
hr(),
withMathJax(),
fluidRow(
column(width = 6,
p("Modèle paramétré :"),
uiOutput("model_equation")),
column(width = 6,
p("Somme des carrés des résidus (valeur à minimiser) :"),
uiOutput("model_resid"))
)
)
)
)
server <- function(input, output, session) {
model_predict <- reactive({
dplyr::mutate(model_data,
y_predit = reglin(x, a = input$a, b = input$b),
distance2 = (y_predit - y)^2
)
})
output$model_equation <- renderUI({
withMathJax(
sprintf("$$y(x) \\ = %.02f \\ + \\ %.02f \\ x$$",
input$a, input$b))
})
output$model_resid <- renderUI({
data <- model_predict()
withMathJax(sprintf("$$ \\ %.02f \\ $$", sum(data$distance2)))
})
output$model_plot <- renderPlot({
data <- model_predict()
chart::chart(data, y ~ x) +
ggplot2::geom_point() +
ggplot2::geom_line(chart::f_aes(y_predit ~ x), color = "red") +
ggplot2::xlab("x") +
ggplot2::ylab("y")
})
trackEvents(session, input, output,
sign_in.fun = BioDataScience::sign_in, conf = conf)
trackSubmit(session, input, output, max_score = 2,
solution = list(a = a_init, b = b_init),
comment = "y = a + b.x",
message.success = "Correct, c'est le meilleur modèle. a est l'ordonnée à l'origine et b est la pente de la droite.",
message.error = "Incorrect, un modèle mieux ajusté existe.")
trackQuit(session, input, output, delay = 20)
}
shinyApp(ui, server)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.