learnitdown::learnitdownShinyVersion("2.0.0")
conf <- BioDataScience::config()
library(shiny)
library(learnitdown)
library(BioDataScience2)
y0_init <- 3.5
k_init <- 0.10
error_sd <- 0.5
set.seed(42)
exponent <- function(x, y0, k)
y0 * exp(k * x)
model_data <- tibble::tibble(
x = seq(0, 20, by = 0.5),
y = exponent(x, y0 = y0_init, k = k_init) +
rnorm(n = length(x), sd = error_sd))
graph <- chart::chart(model_data, y ~ x) +
ggplot2::geom_point() +
ggplot2::xlab("x") +
ggplot2::ylab("y")
ui <- fluidPage(
learnitdownShiny("Ajustement manuel d'un modèle : courbe exponentielle"),
sidebarLayout(
sidebarPanel(
withMathJax(),
p("$$y(x) = y_0 \\ e^{k \\ x}$$"),
sliderInput("y0", label = "y0",
value = 1, min = -5, max = 5, step = 0.5),
sliderInput("k", label = "k",
value = 0.025, min = -0.20, max = 0.20, step = 0.025),
hr(),
submitQuitButtons()
),
mainPanel(
plotOutput("model_plot"),
hr(),
withMathJax(),
fluidRow(
column(width = 6,
p("Modèle paramétré :"),
uiOutput("model_equation")),
column(width = 6,
p("Somme des carrés des résidus (valeur à minimiser) :"),
uiOutput("model_resid"))
)
)
)
)
server <- function(input, output, session) {
model_predict <- reactive({
dplyr::mutate(model_data,
y_predit = exponent(x, y0 = input$y0, k = input$k),
distance2 = (y_predit - y)^2
)
})
output$model_equation <- renderUI({
withMathJax(
sprintf("$$y(x) = %.02f \\ e^{ %.02f \\ x}$$", input$y0, input$k)
)
})
output$model_resid <- renderUI({
data <- model_predict()
withMathJax(sprintf("$$ \\ %.02f \\ $$", sum(data$distance2)))
})
output$model_plot <- renderPlot({
data <- model_predict()
p <- graph
if (!any(is.nan(data$y_predit))) {
p <- p +
ggplot2::geom_line(chart::f_aes(y_predit ~ x), color = "red", data = data)
}
p
})
trackEvents(session, input, output,
sign_in.fun = BioDataScience::sign_in, config = conf)
trackSubmit(session, input, output, max_score = 2,
solution = list(y0 = y0_init, k = k_init),
comment = "y = y0.e^(k.x)",
message.success = "Correct, c'est le meilleur modèle. y0 et la valeur de y pour x = 0 et k est la vitesse de croissance.",
message.error = "Incorrect, un modèle mieux ajusté existe.")
trackQuit(session, input, output, delay = 20)
}
shinyApp(ui, server)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.