learnitdown::learnitdownShinyVersion("2.0.0")
conf <- BioDataScience::config()
library(shiny)
library(learnitdown)
library(BioDataScience2)
asym_init <- 1
b2_init <- 5
b3_init <- 0.5
error_sd <- 0.05
set.seed(42)
model_data <- tibble::tibble(
x = seq(0, 10, by = 0.1),
y = SSgompertz(x, Asym = asym_init, b2 = b2_init, b3 = b3_init) +
rnorm(n = length(x), sd = error_sd))
graph <- chart::chart(model_data, y ~ x) +
ggplot2::geom_point() +
ggplot2::xlab("x") +
ggplot2::ylab("y")
ui <- fluidPage(
learnitdownShiny("Ajustement manuel d'un modèle : modèle de Gompertz"),
sidebarLayout(
sidebarPanel(
withMathJax(),
p("$$y(x) = Asym * e^{- b_{2} * b_{3}^x}$$"),
sliderInput("asym", label = "Asym",
value = 0.00, min = -5.00, max = 5.00, step = 0.5),
sliderInput("b2", label = "b2",
value = 1.00, min = 0, max = 10.00, step = 0.5),
sliderInput("b3", label = "b3",
value = 1.00, min = -1.00, max = 2.00, step = 0.25),
hr(),
submitQuitButtons()
),
mainPanel(
plotOutput("model_plot"),
hr(),
withMathJax(),
fluidRow(
column(width = 6,
p("Modèle paramétré :"),
uiOutput("model_equation")),
column(width = 6,
p("Somme des carrés des résidus (valeur à minimiser) :"),
uiOutput("model_resid"))
)
)
)
)
server <- function(input, output, session) {
model_predict <- reactive({
dplyr::mutate(model_data,
y_predit = SSgompertz(x, Asym = input$asym, b2 = input$b2, b3 = input$b3),
distance2 = (y_predit - y)^2
)
})
output$model_equation <- renderUI({
withMathJax(
sprintf("$$y(x) = %.02f * e^{- %.02f * %.02f^x}$$", input$asym, input$b2, input$b3)
)
})
output$model_resid <- renderUI({
data <- model_predict()
withMathJax(sprintf("$$ \\ %.02f \\ $$", sum(data$distance2)))
})
output$model_plot <- renderPlot({
data <- model_predict()
p <- graph
if (!any(is.nan(data$y_predit))) {
p <- p +
ggplot2::geom_line(chart::f_aes(y_predit ~ x), color = "red", data = data)
}
# if(any(is.nan(data$y_predit))) {
# p <- graph
# } else {
# p <- graph +
# ggplot2::geom_line(chart::f_aes(y_predit ~ x), color = "red", data = data)
# }
p
})
trackEvents(session, input, output,
sign_in.fun = BioDataScience::sign_in, config = conf)
trackSubmit(session, input, output, max_score = 3, solution =
list(asym = asym_init, b2 = b2_init, b3 = b3_init),
comment = "y(x) = Asym * e^(- b2 * b3^x)",
message.success = "Correct, c'est le meilleur modèle.",
message.error = "Incorrect, un modèle mieux ajusté existe.")
trackQuit(session, input, output, delay = 20)
}
shinyApp(ui, server)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.