Description Usage Arguments Value Examples
Calculate values of the CU expressivity measure
for every sequence in the given codonTable
object.
The following methods are implemented:
MELP
, CU expressivity measure based on
Measure Independent of Length and Composition
Supek & Vlahovicek (2005),
E
, gene expression measure (E)
Karlin and Mrazek (2000),
CAI
, Codon Adaptation Index (CAI)
Sharp and Li (1987),
Fop
, frequency of optimal codons (Fop)
Ikemura (1981),
GCB
, gene codon bias (GCB)
Merkl (2003).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | MELP(cTobject, subsets = list(), ribosomal = FALSE,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
MELP(cTobject, subsets = list(),
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
E(cTobject, subsets = list(), ribosomal = FALSE, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
## S4 method for signature 'codonTable'
E(cTobject, subsets = list(), ribosomal = FALSE,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
CAI(cTobject, subsets = list(), ribosomal = FALSE, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
## S4 method for signature 'codonTable'
CAI(cTobject, subsets = list(),
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
Fop(cTobject, subsets = list(), ribosomal = FALSE, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
## S4 method for signature 'codonTable'
Fop(cTobject, subsets = list(),
ribosomal = FALSE, id_or_name2 = "1", alt.init = TRUE,
stop.rm = FALSE, filtering = "none", len.threshold = 80)
GCB(cTobject, seed = logical(), ribosomal = FALSE, perc = 0.05,
id_or_name2 = "1", alt.init = TRUE, stop.rm = FALSE,
filtering = "none", len.threshold = 80)
## S4 method for signature 'codonTable'
GCB(cTobject, seed = logical(),
ribosomal = FALSE, perc = 0.05, id_or_name2 = "1",
alt.init = TRUE, stop.rm = FALSE, filtering = "none",
len.threshold = 80)
|
cTobject |
A |
subsets |
A (named) list of logical vectors, the length of each equal
to |
ribosomal |
Logical, if |
id_or_name2 |
A single string that uniquely identifies the genetic code to extract.
Should be one of the values in the |
alt.init |
logical, whether to use alternative initiation codons.
Default is |
stop.rm |
Logical, whether to remove stop codons. Default is
|
filtering |
Character vector, one of |
len.threshold |
Optional numeric, specifying sequence length, in codons, used for filtering. |
seed |
A logical vector, of the length equal to
|
perc |
percent of top ranking genes to be used as a target set for the next iteration of the algorithm that calculates GCB. Default is 0.05. |
A matrix (for GCB a numeric vector) with CU expressivity values
for every specified subset (subsets
, self
,
ribosomal
) in columns.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | # load example DNA sequences
exampledir <- system.file("extdata", package = "coRdon")
cT <- codonTable(readSet(exampledir))
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# In the examples below, MELP values are calculated for all sequences;
# any other CU expressivity measure can be caluclated in the same way,
# the only exception being GCB which takes `seed` instead of `subset`
# parameter. (The exemples for GCB calculation are further below).
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# calculate MELP with respect to the CU
# of ribosomal genes among the example DNA sequences
melp <- MELP(cT, ribosomal = TRUE)
head(melp)
# calculate MELP distance with respect to the average CU
# of the first 20 example DNA sequences
# (i.e. the first half of the example DNA set)
melp <- MELP(cT, subsets = list(half = c(rep(TRUE, 20), rep(FALSE, 20))))
# alternatively, you can specify codonTable as a subset
halfcT <- codonTable(codonCounts(cT)[1:20,])
melp2 <- MELP(cT, subsets = list(half = halfcT))
all.equal(melp, melp2) # TRUE
# filtering
MELP(cT, ribosomal = TRUE,
filtering = "hard", len.threshold = 80) # MELP for 9 sequences
# (note that, accidentally,
# all are ribosomal)
sum(getlen(cT) > 80) # 9 sequences are longer than 80 codons
melp1 <- MELP(cT, ribosomal = TRUE, filtering = "none") # no filtering
melp2 <- MELP(cT, ribosomal = TRUE, filtering = "soft") # warning
all.equal(melp1, melp2) # TRUE
# options for genetic code
melp <- MELP(cT, ribosomal = TRUE,
stop.rm = TRUE) # don't use stop codons in calculation
melp <- MELP(cT, ribosomal = TRUE,
alt.init = FALSE) # don't use alternative start codons
melp <- MELP(cT, ribosomal = TRUE,
id_or_name2 = "2") # use different genetic code, for help
# see `?Biostrings::GENETIC_CODE`
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# GCB calculationd
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# calculate GCB with CU of ribosomal genes among the example DNA sequences
# used as a target (seed) in the first iteration of the algorithm
gcb <- GCB(cT, ribosomal = TRUE)
head(gcb)
# calculate GCB distance with the first 20 example DNA sequences
# (i.e. the first half of the example DNA set) as a seed
gcb <- GCB(cT, seed = c(rep(TRUE, 20), rep(FALSE, 20)))
# alternatively, you can specify codonTable as a seed
halfcT <- codonTable(codonCounts(cT)[1:20,])
gcb2 <- GCB(cT, seed = halfcT)
all.equal(gcb, gcb2) # TRUE
# options for genetic code
gcb <- GCB(cT, ribosomal = TRUE,
stop.rm = TRUE) # don't use stop codons in calculation
gcb <- GCB(cT, ribosomal = TRUE,
alt.init = FALSE) # don't use alternative start codons
gcb <- GCB(cT, ribosomal = TRUE,
id_or_name2 = "2") # use different genetic code, for help
# see `?Biostrings::GENETIC_CODE`
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.