#variables present
load("data_old/presencia_y_variables.RData")
variables <- europe2000
projection(variables)
names(variables)
res(variables)
europe2000 <- variables
save(europe2000, file = "data/europe2000.RData")
#variables past
europe21kBP <- brick(stack(list.files(path="data_old/4_proyeccion_temporal/europe21kBP",pattern='*.asc', full.names=TRUE)))
save(europe21kBP, file = "data/europe21kBP.RData")
#presence
virtualSpecies$xy #keep this
virtualSpecies$nicho.dimensiones #keep this
virtualSpecies$nicho.parametros #keep this, but turn into dataframe
virtualSpecies$nicho.mapa$probability.of.occurrence #keep this or the previous one
virtualSpecies$nicho.mapa$nicho.plot #keep this
nicho.parametros <- t(as.data.frame(virtualSpecies$nicho.parametros))
colnames(nicho.parametros) <- c("mean", "sd")
#virtual species
virtualSpecies <- list()
virtualSpecies$niche.dimensions <- virtualSpecies$nicho.dimensiones
virtualSpecies$niche.parameters <- nicho.parametros
virtualSpecies$niche.plot <- virtualSpecies$nicho.mapa$nicho.plot
virtualSpecies$suitability <- virtualSpecies$nicho.mapa$suitab.raster
virtualSpecies$observed.presence <- virtualSpecies$xy
save(virtualSpecies, file = "data/virtualSpecies.RData")
#presence table
#################
source("funciones.R")
data(virtualSpecies)
data(europe2000)
#thinning presence data
xy <- thinning(
xy = virtualSpecies$observed.presence,
brick = europe2000,
separacion = 2
)
#valores de las variables para virtualSpecies$xy
xy <- data.frame(
xy,
raster::extract(
x = europe2000,
y = xy,
df = TRUE,
cellnumbers = FALSE
)
)
xy$ID <- NULL
#añadimos columna de presencia (presencia = 1)
xy$presence <- 1
#generating background
background <- data.frame(
dismo::randomPoints(
mask = europe2000,
n = nrow(na.omit(as.data.frame(europe2000))) / 5
)
)
#keeping min-max
for(variable in names( nrow(na.omit(as.data.frame(europe2000))))){
#buscamos las coordenadas de la celda con el menor valor
xy.min <- raster::xyFromCell(object = europe2000,
cell = raster::which.min(europe2000[[variable]])[1]
)
#buscamos las coordenadas de la celda con el mayor valor
xy.max <- raster::xyFromCell(object = europe2000,
cell = raster::which.max(europe2000[[variable]])[1]
)
#las unimos al background
background <- rbind(background, xy.min, xy.max)
}
#eliminamos duplicados
background <- background[!duplicated(background), ]
#vemos el background
plotPresencia(
brick = europe2000,
variable = "human_footprint",
lon = background$x,
lat = background$y
)
#le añadimos los valores de las variables
background <- data.frame(
background,
raster::extract(
x = europe2000,
y = background,
df = TRUE,
cellnumbers = FALSE
)
)
background$ID <- NULL
#añadimos columna de presencia (presencia = 1)
background$presence <- 0
presenceBackground <- rbind(xy, background)
save(presenceBackground, file = "data/presenceBackground.rda")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.