#### R script that builds calibration input file for WDEQ R Shiny app
#
# Ben.Block@tetratech.com, Date completed: 2022-05-14
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# R version 4.1.2 (2021-11-01) -- "Bird Hippie"
#clear global environment
rm(list=ls())
# load libraries
library(tidyverse)
library(readxl)
# Declare directories ####
wd <- getwd()
input.dir <- "TaxaTraits"
fn.data1 <- "TaxaMasterPeriphyton_TrimTraits_20220603.csv"
fn.data2 <- "WDEQ_Taxa_MP_ni_20220514.xlsx"
fn.data3 <- "WDEQ_SitesData_GIS.xlsx"
fn.data4 <- "WDEQ_DiatomMetrics_BenJ.csv"
myDate <- format(Sys.Date(), "%Y%m%d")
# Read data files ####
df_msl <- read_csv(file.path(wd,input.dir, fn.data1)
, na = c("NA",""), trim_ws = TRUE, skip = 0
, col_names = TRUE, guess_max = 100000)
df_Indivs <- read_excel(file.path(wd,input.dir, fn.data2)
, na = c("NA",""), trim_ws = TRUE, skip = 0
, col_names = TRUE, guess_max = 100000)
df_GIS <- read_excel(file.path(wd,input.dir, fn.data3)
, na = c("NA",""), trim_ws = TRUE, skip = 0
, col_names = TRUE, guess_max = 100000)
# df_BenJResults <- read_csv(file.path(wd,input.dir, fn.data4)
# , na = c("NA",""), trim_ws = TRUE, skip = 0
# , col_names = TRUE, guess_max = 100000)
# BenJ samp counts ####
# df_BenJ_trim <- df_BenJResults %>%
# select(SampID, SampType, RepNum, ni_total) %>%
# filter(SampType == "Primary" |SampType == "Revisit") %>%
# filter(RepNum == 0) %>%
# rename(ni_total_BenJ = ni_total)
#
# df_BenJ_trim$SampID <- as.character(df_BenJ_trim$SampID)
# test <- df_Indivs %>%
# filter(RepNum == 0) %>%
# group_by(SampID) %>%
# summarize(ni_total_BenB = sum(Count)) %>%
# left_join(., df_BenJ_trim, by = "SampID") %>%
# mutate(Diff = (ni_total_BenB - ni_total_BenJ))
# Trim datasets ####
df_Indivs_trim <- df_Indivs %>%
filter(RepNum == 0) %>%
select(STATION_CD, SampID, CollDate, Count, FinalID) %>%
rename(STATIONID = STATION_CD
, SAMPLEID = SampID
, COLLDATE = CollDate
, N_TAXA = Count
, TAXAID = FinalID)
df_GIS_trim <- df_GIS %>%
select(StationCode, Latitude, Longitude, Elevation
, BFIWs, SWs, KffactWs, PrecipWs, TmaxWs, TmeanWs, RckDepWs) %>%
rename(STATIONID = StationCode
, LAT = Latitude
, LONG = Longitude)
df_msl_trim <- df_msl %>%
select(-c(TaxaID, Taxon_forUSGS_traits
, Taxon_forTt_traits, SALINITY_USGS)) %>%
rename(TAXAID = COMMON_NAME
, ORDER = Order
, FAMILY = Family)
# Combine data ####
df_combine1 <- left_join(df_Indivs_trim, df_msl_trim, by = "TAXAID")
df_combine2 <- left_join(df_combine1, df_GIS_trim, by = "STATIONID")
# Extras
df_combine3 <- df_combine2 %>%
rename(DIATAS_TN = DIATASTN) %>%
mutate(INDEX_REGION = "Statewide"
, INDEX_NAME = "WY_DiatomIBI_2022"
, EXCLUDE = FALSE
, NONTARGET = FALSE) %>%
select(INDEX_NAME, INDEX_REGION, STATIONID, SAMPLEID, COLLDATE, N_TAXA
, TAXAID, EXCLUDE, NONTARGET, everything())
# Export data ####
write.table(df_combine3, file.path(wd, input.dir
, paste0("WDEQ_Cal_Input_4RShiny_"
, myDate,".csv"))
, sep = ",", row.names = FALSE, col.names = TRUE, na = "")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.