#' Compute eCDF
#'
#' Compute cumulative density of change score for eCDF plot
#'
#' @param dat pass the dataframe, must contain the anchor group and the change score
#' @param anchor.group indicate the name of the anchor group
#' @param time.var variable of the Time in the dataframe - PLEASE CHECK THAT THIS IS CORRECTLY ORDERED, default is Time
#' @param timepoint default here is to just use the final timepoint, e.g., "Time_4". Please be sure to have
#' ordered your time variable correctly.
#' @param change.score indicate the name of the PRO change score
#' @return character vector
#' @export
compute_ecdf <- function(
dat = NULL,
anchor.group = NULL,
time.var = NULL,
timepoint = NULL, #default is the final timepoint; please prperly order your time variable
change.score = NULL
){
# Only acceptable defaul is for the timepoint, rest throw an error if unspecified
if (is.null(dat)) stop('Please specify dataframe in `compute_ecdf()` ')
if (is.null(anchor.group)) stop('Please specify anchor.group in `compute_ecdf()` ')
if (is.null(time.var)) stop('Please specify time.var in `compute_ecdf()` ')
if (is.null(change.score)) stop('Please specify change.score in `compute_ecdf()` ')
# Select Final Timepoint:
if (is.null(timepoint)) {
final.timepoint <- sort(unique(dat[, time.var, drop = T]), decreasing = T)[1]
} else {
final.timepoint <- timepoint
}
# Reduce the dataframe:
dat <- dat[which(dat[ , time.var] == final.timepoint), ]
dat <- dat[, c(anchor.group, change.score), drop = F]
# Initalize:
dat$CDF <- NA
dat$density_x <- NA
dat$density_y <- NA
# dat$lower_ci <- NA
# dat$upper_ci <- NA
# VERY IMPORTANT STEP:
# Order the delta values WITHIN each group
#all(order(dat$anchor.groups, dat$Y_comp_delta) == with(dat, order(get(anchor.group), get(change.score))))
owg <- with(dat, order( get(anchor.group), get(change.score)))
dat <- dat[owg, ]
#this will order the delta values from least to greatest stratified on the anchor group
#loop this over the groups:
groups <- dat[, anchor.group, drop = T]
groups <- unique(groups)
for(gg in groups){
# pull change scores in group
dd <- which(dat[, anchor.group, drop = T] == gg)
dn <- dat[dd, change.score, drop = T]
#
dn2 <- dat[, change.score, drop = T]
# eCDF
Pcdf <- ecdf(dn)
dat[dd, 'CDF'] <- Pcdf(dn)
# Density (ePDF)
P <- density(dn,
kernel='gaussian',
bw = 'SJ',
n = length(dn),
from=min(dn),
to=max(dn)
)
dat[dd, 'density_x'] <- P$x
dat[dd, 'density_y'] <- P$y
# Confirm probability density sums to 1:
# x <- diff(P$x) # same distance between all x-axis values, just multiply by one of them:
# sum(P$y * x[1]) # sums to 1, within a rounding error
# # Confidence intervals:
# for(i in 1:sum(dat$Group == group)) {
#
# out <- binom.test(x = sum(dat$CDF[dat$Group == group] <= dat$CDF[dat$Group == group][i], na.rm = T) ,
# n = length(dat$CDF[dat$Group == group]),
# p = dat$CDF[dat$Group == group][i],
# alternative = 'two.sided')
#
# dat[which(dat$Group == group), c('lower_ci', 'upper_ci')][i, ] <- out$conf.int
#
# }# end loop over subjects for conf int
}# end loop over anchor groups
return(dat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.