library("parallel")
source("inst/R_scripts/Simulations/00.setup.R")
listBenchmark <- list.files(pathDat)
nbCPU <- 2
for(ii in seq(along=listBenchmark)){
b <- listBenchmark[ii]
K <- nclust[ii]
pathDat_sim <- R.utils::Arguments$getWritablePath(sprintf("%s/%s", pathDat, b))
pathMeth_sub <- R.utils::Arguments$getWritablePath(sprintf("%s/%s", pathMeth, b))
print(pathMeth_sub)
list.sim <- list.files(pathDat_sim, full.names = TRUE) %>% lapply(readRDS)
data <- lapply(list.sim, function (ll) ll$data)
remove_zero <- function (dat){
lapply(dat, function(dd){
idx <- which(colSums(dd)==0)
if(length(idx)!=0){
return(dd[, -idx])
}else{
return(dd)
}
})
}
data_filter <- data %>% lapply(remove_zero)
print("SNF")
SNFresults <- mclapply(data_filter, IntMultiOmics, method="SNF", K=K, mc.cores = nbCPU)
saveRDS(SNFresults, file=file.path(pathMeth_sub, sprintf("SNF_res.rds")))
print("kernel")
Kernelresults <- mclapply(data_filter, IntMultiOmics, method="MixKernel", K=K, mc.cores = nbCPU)
saveRDS(Kernelresults, file=file.path(pathMeth_sub, sprintf("Kernel_res.rds")))
print("MCIA")
MCIAresults <- mclapply(data_filter, IntMultiOmics, method="MCIA", K=K, mc.cores = nbCPU)
saveRDS(MCIAresults, file=file.path(pathMeth_sub, sprintf("MCIA_res.rds")))
print("Mocluster")
Moaresults <- mclapply(data_filter, IntMultiOmics, method="Mocluster", K=K, ncomp=4, k=c(0.05,0.4, 0.1), mc.cores = nbCPU)
saveRDS(Moaresults, file=file.path(pathMeth_sub, sprintf("Mocluster_res.rds")))
print("RGCCA")
RGCCAresults <- mclapply(data_filter, IntMultiOmics, method="RGCCA", K=K, ncomp=rep(K,3), mc.cores = nbCPU)
saveRDS(RGCCAresults, file=file.path(pathMeth_sub, sprintf("RGCCA_res.rds")))
print("NMF")
NMFresults <- mclapply(data_filter, IntMultiOmics, method="intNMF", K=K, mc.cores = nbCPU)
saveRDS(NMFresults, file=file.path(pathMeth_sub, sprintf("NMF_res.rds")))
print("SGCCA")
SGCCAresults <- mclapply(data_filter, IntMultiOmics, method="SGCCA", K=K, c1= c(0.3, 0.3,0.4),
ncomp=rep(K, 3), mc.cores = nbCPU)
saveRDS(SGCCAresults, file=file.path(pathMeth_sub, sprintf("SGCCA_res.rds")))
print("icluster")
iCluster_results <- mclapply(data_filter, IntMultiOmics, method="iCluster", K=K-1, lambda= c(0.03, 0.03,0.03),
type=c("gaussian", "binomial", "gaussian"), mc.cores = nbCPU)
saveRDS(iCluster_results, file=file.path(pathMeth_sub, sprintf("iCluster_res.rds")))
# print("MOFA")
# Mofaresults <- lapply(1:length(data_filter), function (dd) {
# IntMultiOmics(data_filter[[dd]], method="MOFA", K=K)
# }) %>% save(file=file.path(pathMeth_sub, sprintf("MOFA_res.rds")))
print("CIMLR")
CIMLR_results <- lapply(data_filter, IntMultiOmics, method="CIMLR", K=K)
saveRDS(CIMLR_results, file=file.path(pathMeth_sub, sprintf("CIMLR_res.rds")))
print("LRAcluster")
LRAcluster_results <- lapply(data_filter, IntMultiOmics, method="LRAcluster", K=K, type=c("gaussian", "binary", "gaussian"))
saveRDS(LRAcluster_results, file=file.path(pathMeth_sub, sprintf("LRAcluster_res.rds")))
print("PINSPLUS")
PINSPLUS_results <- lapply(data_filter, IntMultiOmics, method="PINSPlus", K=K)
saveRDS(PINSPLUS_results, file=file.path(pathMeth_sub, sprintf("PINSPLUS_res.rds")))
print("Consensus Clustering")
ConsensusClustering_results <- lapply(data_filter, IntMultiOmics, method="ConsensusClustering", K=K)
saveRDS(ConsensusClustering_results, file=file.path(pathMeth_sub, sprintf("ConsensusClustering_res.rds")))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.