#' Preliminary Tidy Up of the Demographics and Sample Collection Data Table
#'
#' @param sample_collection_tbl Tibble obtained from read_demographics_csv()
#' @param date_fmt Format used to specify dates (Default: MM/DD/YYYY)
#' @param time_zone Time zone for collection time (Default: "America/New_York")
#'
#' @return Tibble with the Sample Collection and
#' the deidentified Demographics Data organized to make it convenient to update
#' deidentified DB database
#'
#' @importFrom magrittr "%>%"
do_prelim_tidy_sc <- function(sample_collection_tbl,
date_fmt = c("%m/%d/%y"),
time_zone = "America/New_York") {
output_tbl <- sample_collection_tbl %>%
dplyr::mutate(
population = .data[["teskit_sku"]],
population = dplyr::recode(.data[["population"]],
`CLM-SALIVA-00001` = "Athletics",
`CLM-SALIVA-00002` = "University",
`CLM-SALIVA-00003` = "Community",
`CLM-SALIVA-00004` = "Tricounty",
`G7-PCR-DTPM` = NA_character_,
`LABTECH-PCR-NASAL` = NA_character_,
`PCR- Anterior-001` = NA_character_,
`G7-PCR-Saliva` = NA_character_,
),
dplyr::across(.cols = -c(
zip_code,
patient_id,
testkit_id,
collection_date,
result_date,
birth_year
), stringr::str_to_upper),
order_priority = dplyr::recode(.data[["order_priority"]],
"PRIORITY" = "EXPOSED",
"STANDARD" = "SURVEILLANCE",
"STAT" = "SYMPTOMATIC"
),
gender = dplyr::recode(.data[["gender"]],
"MALE" = "M",
"FEMALE" = "F"
)
)
return(output_tbl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.