#####################################################################
#### Function for LRT of mixcure model for ########
#### FT-PL or ML via direct likelihood ratio comparison ########
#####################################################################
#### previously 'mixcure.penal.lrt.test.r' ##########
#####################################################
mixcure.penal.1d.dc.lrt <- function(formula, data, init, pl, iterlim = 200) {
require(splines)
require(survival)
require(abind)
#########################################################################################
mat.inv <- function(matx) {
detm = det(matx)
#2x2 matrix inverse;
if (ncol(matx) == 2) {
inv.matx = (1/detm) * matrix(c(matx[2,2],-matx[2,1],-matx[1,2],matx[1,1]), nrow = 2)
}
else {
#For any n>2 dimension square matrix;
adjug.matx <- matrix(rep(0, ncol(matx)^2), nrow = nrow(matx))
for (i in 1:nrow(matx)) {
for (j in 1:ncol(matx)) {
adjug.matx[i,j] <- (-1)^(i+j)*det(matx[-i,][,-j])
}
}
inv.matx <- t(adjug.matx/detm)
}
return(inv.matx)
}
#########################################################################################
design.matrix <- model.frame(formula, data = data, na.action = na.omit);
survt <- design.matrix[,1];
design.matrix <- model.matrix(formula, data = design.matrix);
# index ranges of coefficients of glm and cox models
index.cure.v <- 1 : ncol(design.matrix);
index.surv.v <- (ncol(design.matrix) + 1) : (2*length(index.cure.v))
# index of alpha,the shape parameter
index.gamma <- 2*length(index.cure.v)+1;
#############################################################
#### loglik function of full model
loglik.mixture <- function(p, survt, design.matrix, index.cure.var=index.cure.v, index.surv.var=index.surv.v, pl) {
#### parameter and variable dependent parameters;
#####
theta = 1/(1+exp(-design.matrix%*%p[index.cure.var]))
eps = survt[,1]^(p[index.gamma])*exp(design.matrix%*%p[index.surv.var])
eta = 1/((exp(eps)-1)*theta+1)
delta = 1/(theta/(1-theta)*exp(eps)+1)
kap = -theta*(1-theta)*(1-eta)+(1-theta)^2*eta*(1-eta)
pi = exp(eps)*eps*eta^2
#calculate loglikelihood for the unpenalized;
cure.par <- p[1 : ncol(design.matrix) ];
surv.par <- p[ (ncol(design.matrix) + 1) : (2*length(cure.par)) ];
p.gamma <- p[ 2*length(cure.par) + 1 ]; #use original shape parameter instead of exp();
# loglikelihood is defined as the negative of the actual loglikelihood for feeding nlm() minimizer;
loglikelihood <- -sum( ( log(1-theta) + log(p.gamma)-log(survt[,1])
+log(eps)-eps )[survt[, 2] == 1] ) -
sum( (log(theta + (1-theta)*exp(-eps)))[survt[, 2] == 0] );
if (pl==T) {
####calculate inverse of info matrix by block matrix;
n.elema = length(index.cure.var)^2
a.sub1 <- matrix(rep(0,n.elema), nrow = length(index.cure.var))
a.sub2 <- matrix(rep(0,n.elema), nrow = length(index.cure.var))
for (i in c(index.cure.var)) {
for (j in c(index.cure.var)) {
a.sub1[i,j] <- sum((design.matrix[,i]*design.matrix[,j]*theta*(1-theta))[survt[, 2] == 1])
a.sub2[i,j] <- sum((design.matrix[,i]*design.matrix[,j]*kap)[survt[, 2] == 0])
}
}
info.a = a.sub1 + a.sub2
design.xt <- cbind(design.matrix, log(survt[,1]))
n.elemb <- length(index.cure.var)*(length(index.cure.var)+1)
b.sub <- matrix(rep(0,n.elemb), nrow = length(index.surv.var))
for (i in c(index.cure.var)) {
for (j in c(index.cure.var,length(index.surv.var)+1)) {
b.sub[i,j] <- -sum((design.matrix[,i]*design.xt[,j]*eps*(1-delta)*delta)[survt[, 2] == 0])
}
}
info.b = b.sub #Upper right block of fisher.info;
n.elemd <- (length(index.surv.var)+1)^2
d.sub1 <- matrix(rep(0,n.elemd), nrow = (length(index.surv.var)+1))
d.sub2 <- matrix(rep(0,n.elemd), nrow = (length(index.surv.var)+1))
for (i in c(index.cure.var,length(index.surv.var)+1)) {
for (j in c(index.cure.var,length(index.surv.var)+1)) {
d.sub1[i,j] <- sum((design.xt[,i]*design.xt[,j]*eps)[survt[, 2] == 1])
d.sub2[i,j] <- sum((design.xt[,i]*design.xt[,j]*(eps*delta-eps^2*(delta*(1-delta))))[survt[, 2] == 0])
}
}
info.d = d.sub1 + d.sub2 +
matrix(c(rep(0, (n.elemd-1)),sum(survt[, 2] == 1)/(p[index.gamma]^2)),nrow = (length(index.surv.var)+1))
info.d.inv = mat.inv(info.d)
info.set0 = info.a-info.b%*%info.d.inv%*%t(info.b)
#determinant of hessian matrix;
det.info = det(info.set0)*det(info.d)
loglik = loglikelihood - 0.5*log(det.info)
} else if (pl == FALSE) {
loglik = loglikelihood
}
return(loglik)
}
######END of loglik.mixture####################################
# Parameter estimation under Ha (non-restricted likelihood)
# maximize penalized or unpenalized loglikelihood by nlm;
maximizer0 <- nlm(
f = loglik.mixture, p = init, survt=survt, design.matrix=design.matrix,
pl = pl,
iterlim = iterlim, hessian=F);
loglik <- -maximizer0$minimum #in loglik function loglik was calculated as minus of actual loglik value
#############################################################
##loglik function for testing parameters of cure or surv part;
#design.matrix1-surv part, design.matrix0-cure part;
loglik.mixture.part <- function(p, survt, design.matrix1, design.matrix0, index.cure.var=index.cure.v, index.surv.var=index.surv.v, pl, part.cure =F) {
design.mtx.comb = cbind(design.matrix0,design.matrix1)
#parameter and variable dep parameters;
if (k > length(index.cure.v)) {
theta = 1/(1+exp(-design.matrix[,index.cure.var]%*%as.matrix(p[index.cure.var])))
eps = survt[,1]^(p[index.gamma-1])*exp(design.mtx.comb[,index.surv.var]%*%as.matrix(p[-c(index.cure.var,index.gamma-1)]))
} else {
theta = 1/(1+exp(-design.matrix[,index.cure.var]%*%as.matrix(p[-c(index.surv.var-1,index.gamma-1)])))
eps = survt[,1]^(p[index.gamma-1])*exp(design.mtx.comb[,index.surv.var]%*%as.matrix(p[index.surv.var-1]))
}
eta = 1/((exp(eps)-1)*theta+1)
delta = 1/(theta/(1-theta)*exp(eps)+1)
kap = -theta*(1-theta)*(1-eta)+(1-theta)^2*eta*(1-eta)
pi = exp(eps)*eps*eta^2
####################################################################################################
# Note: below constructs fisher info matrix; steps are divide into 4 blocks, 2 square blocks (A&D) #
# on upper left and lower right, 2 identical transposed blocks (B) on upper right and lower left; #
# the identical B blocks are not identical in reduced models unless it's a global LRT, needs to be C#
####################################################################################################
#calculate loglikelihood for the unpenalized;
p.gamma <- p[index.gamma-1]; #use original shape parameter instead of exp();
# loglikelihood is defined as the negative of the actual loglikelihood for feeding nlm() minimizer;
loglikelihood <- -sum( ( log(1-theta) + log(p.gamma)-log(survt[,1])
+ log(eps)-eps )[survt[, 2] == 1] ) -
sum( (log(theta + (1-theta)*exp(-eps)))[survt[, 2] == 0] );
if (pl == F) {loglik.part = loglikelihood} else {
max.len = max(length(index.cure.var),length(index.surv.var))
n.elema = max.len^2
a.sub1 <- matrix(rep(0,n.elema), nrow = max.len)
a.sub2 <- matrix(rep(0,n.elema), nrow = max.len)
for (i in c(index.cure.var)) {
for (j in c(index.cure.var)) {
a.sub1[i,j] <- sum((as.matrix(design.matrix0)[,i]*as.matrix(design.matrix0)[,j]*theta*(1-theta))[survt[, 2] == 1])
a.sub2[i,j] <- sum((as.matrix(design.matrix0)[,i]*as.matrix(design.matrix0)[,j]*kap)[survt[, 2] == 0])
}
}
info.a = (a.sub1 + a.sub2)[index.cure.var,index.cure.var]
##info matrix block B
design.xt0 <- cbind(design.matrix0, log(survt[,1]))
n.elemb <- max.len*(max.len+1)
b.sub <- matrix(rep(0,n.elemb), nrow = max.len)
for (i in c(index.cure.var)) {
for (j in c((index.surv.var-max.len), max.len+1)) {
b.sub[i,j] <- -sum((as.matrix(design.matrix1)[,i]*design.xt0[,j]*eps*(1-delta)*delta)[survt[, 2] == 0]) #equivalent to expression below
}
}
info.b = b.sub[index.cure.var,c(index.surv.var-max.len,index.gamma-max.len)]
design.xt1 <- cbind(design.matrix1, log(survt[,1]))
n.elemd <- (max.len+1)^2
d.sub1 <- matrix(rep(0,n.elemd), nrow = (max.len+1))
d.sub2 <- matrix(rep(0,n.elemd), nrow = (max.len+1))
for (i in c(index.surv.var-max.len, max.len +1)) {
for (j in c(index.surv.var-max.len, max.len +1)) {
d.sub1[i,j] <- sum((design.xt1[,i]*design.xt1[,j]*eps)[survt[, 2] == 1])
d.sub2[i,j] <- sum((design.xt1[,i]*design.xt1[,j]*(eps*delta-eps^2*(delta*(1-delta))))[survt[, 2] == 0])
}
}
d.sub = d.sub1 + d.sub2 +
matrix(c(rep(0, (n.elemd - 1)),sum(survt[, 2] == 1)/(p[index.gamma-1]^2)),
nrow = (max.len + 1))
info.d = d.sub[c(index.surv.var-max.len,index.gamma-max.len),c(index.surv.var-max.len,index.gamma-max.len)]
info.d.inv = mat.inv(info.d)
# #info.set0 is (A-BD^-1B^T), dif than used in modified score;
if (length(index.cure.v)<3 & part.cure ==T) {
info.set0 = info.a-t(info.b)%*%info.d.inv%*%info.b
} else{
info.set0 = info.a-info.b%*%info.d.inv%*%t(info.b)
}
det.info = matrix.det(info.set0)*matrix.det(info.d)
loglik.part = loglikelihood - 0.5*log(det.info)
}
return(loglik.part)
}
#################################################################
#### parameter estimation under H0 for individual parameter
#### loglikelihood ratio test statistics for each of cure part variables;
dim.v <- ncol(design.matrix)
ll.cure <- rep(0,dim.v)
llr.cure <- rep(0,dim.v)
pval.cure <- rep(0,dim.v)
for (k in index.cure.v) {
maximizer <- nlm(
f = loglik.mixture.part,
p = init[-k],
survt = survt, design.matrix0 = design.matrix,
design.matrix1=design.matrix, part.cure = T,
index.cure.var=index.cure.v[-k],
pl=pl,
iterlim = iterlim, hessian=F
);
loglik.part = -maximizer$minimum;
dif.ll = -2*(loglik.part-loglik); #loglik is ll under non-restricted model;
pval = pchisq(abs(dif.ll),df=1,lower.tail=FALSE);
ll.cure[k]<- loglik.part
llr.cure[k]<- dif.ll
pval.cure[k]<- pval
}
### loglikelihood calculation for each surv part variable;
ll.surv <- rep(0,ncol(design.matrix))
llr.surv <- rep(0,ncol(design.matrix))
pval.surv <- rep(0,ncol(design.matrix))
for (k in index.surv.v) {
is=k-length(index.cure.v)
maximizer <- nlm(
f = loglik.mixture.part, p = init[-k],
survt = survt, design.matrix1 = design.matrix,
design.matrix0=design.matrix, part.cure = F,
index.surv.var=index.surv.v[-is],
pl=pl,
iterlim = iterlim, hessian=FALSE
);
loglik.part = -maximizer$minimum;
dif.ll = -2*(loglik.part-loglik);
pval = pchisq(abs(dif.ll),df=1,lower.tail=FALSE);
ll.surv[is]<- loglik.part
llr.surv[is]<-dif.ll
pval.surv[is]<-pval
}
coef.table.cure <- cbind(
'LL.cure' = ll.cure,
'LLR' = llr.cure,
'Pr(>chisq)' = pval.cure
);
rownames(coef.table.cure) <- colnames(design.matrix);
coef.table.surv <- cbind(
'LL.surv' = ll.surv,
'LLR' = llr.surv,
'Pr(>chisq)' = pval.surv
);
rownames(coef.table.surv) <- colnames(design.matrix);
coef.table.alpha <- "NA";
#run.time = proc.time() - init.time
#######################################
## Output tables from FT-PLE or ML; ##
#######################################
out <- list(
coefficients = list(
cure = coef.table.cure,
surv = coef.table.surv,
alpha = coef.table.alpha
# run.time
)
);
class(out) <- c('mixcure.dc.lrt', 'list');
return(out);
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.