View source: R/poisson_lognormal_mcle.R
| poisson_lognormal_mcle | R Documentation |
poisson_lognormal uses maximum composite likelihood estimation to fit
Poisson log-normal models to each sample.
poisson_lognormal_mcle( df_samples_subset, protein_names, condition, group, ncores = 1, slurm_settings = "slurm_batchtools.tmpl" )
df_samples_subset |
Data frame or tibble with proteins counts, cell condition, and group information |
protein_names |
A vector of column names of protein to use in the analysis |
condition |
The column name of the condition variable |
group |
The column name of the group variable |
ncores |
Number of CPU cores |
slurm_settings |
Path to slurm cluster template for |
A list of class cytoeffect_poisson_mcle containing
tb_args |
output tibble of model fits |
protein_names |
input protein names |
condition |
input condition variable |
group |
input group names |
df_samples_subset |
input df_samples_subset table |
set.seed(1)
df = simulate_data(n_cells = 10)
str(df)
fit = poisson_lognormal_mcle(df,
protein_names = names(df)[3:ncol(df)],
condition = "condition",
group = "donor",
ncores = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.