predict.semihregScair: Prediction of the semiparametric harmonic regression with...

Description Usage Arguments Value Author(s) See Also Examples

Description

Return predicted values of the semiparametric harmonic regression with GAM. The prediction procedure utilizes the function predict.scair in the package scar.

Usage

1
2
## S3 method for class 'semihregScair'
predict(object, newt, ...)

Arguments

object

An object of class "semihregScair".

newt

A vector of sampled time points for predicted values.

...

Other parameters to be passed through to predicting functions.

Value

A matrix of two column, where the first column contains the sample time points and the second column contains the corresponding predicted values.

Author(s)

Yuanhao Lai

See Also

semihregScair, predict.scair.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Simulate the series
set.seed(193)
g <- function(x){-2*exp(-x^3)}
n <- 50
t <- 1:n
lambda0 <- 0.123
phi0 <- 0.2*2*pi
u <- cos(2*pi*lambda0*t+phi0)
e <- rnorm(n)
y <- g(u)+e

# Fit the semi-harmonic regression
fit1 <- semihregScair(y,t,lambda0=lambda0,shape="in",iter=100)
names(fit1)
fit1$esty

# Prediction for the continuous time.
newt <- seq(1,n,0.05) 
head( predy <- predict(fit1,newt)) 

plot(newt,g(cos(2*pi*lambda0*newt+phi0)),
     type="b",pch=19,main="Semiparametric with scair",
     xlab="t", ylab="g(u)",
     ylim=c(min(predy[,2])-1,max(predy[,2])+0.5) )
lines(newt,predy[,2],col="red",type="b")

CliffordLai/harper documentation built on May 8, 2019, 1:53 p.m.