#' CGGP_internal_calc_cholS_lS_sigma2_pw
#'
#' Quickly calculate cholS, lS, sigma2, and pw. To be used within
#' neglogpost.
#'
#' @param CGGP CGGP object
#' @param y Measured output values
#' @param theta Correlation parameters
#'
#' @noRd
#'
#' @return List with cholS, lS, sigma2, pw
# @export
#'
# @examples
CGGP_internal_calc_cholS_lS_sigma2_pw <- function(CGGP,y,theta) {
#We need to return pw, sigma2 and cholS and lS
Q = max(CGGP$uo[1:CGGP$uoCOUNT,]) # Max value of all blocks
cholS = list(matrix(1,1,1),Q*CGGP$d) # To store choleskys
lS = matrix(0, nrow = max(CGGP$uo[1:CGGP$uoCOUNT,]), ncol = CGGP$d) # Save log determinant of matrices
# Loop over each dimension
for (dimlcv in 1:CGGP$d) {
# Loop over each possible needed correlation matrix
for (levellcv in 1:max(CGGP$uo[1:CGGP$uoCOUNT,dimlcv])) {
Xbrn = CGGP$xb[1:CGGP$sizest[levellcv]]
Xbrn = Xbrn[order(Xbrn)]
Sstuff = CGGP$CorrMat(Xbrn, Xbrn , theta[(dimlcv-1)*CGGP$numpara+1:CGGP$numpara],return_dCdtheta = FALSE)
S = Sstuff
# When theta is large (> about 5), the matrix is essentially all 1's, can't be inverted
solvetry <- try({
cS = chol(S)
cholS[[(dimlcv-1)*Q+levellcv]]= as.matrix(cS+t(cS)-diag(diag(cS))) #store the symmetric version for C code
})
if (inherits(solvetry, "try-error")) {return(Inf)}
lS[levellcv, dimlcv] = 2*sum(log(diag(cS)))
}
}
if(!is.matrix(y)){
sigma2 = 0 # Predictive weight for each measured point
pw = rep(0, length(y)) # Predictive weight for each measured point
# Loop over blocks selected
gg = (1:CGGP$d-1)*Q
for (blocklcv in 1:CGGP$uoCOUNT) {
if(abs(CGGP$w[blocklcv])>0.5){
IS = CGGP$dit[blocklcv, 1:CGGP$gridsizet[blocklcv]];
B0 = y[IS]
B = CGGP$w[blocklcv]*B0
VVV1 = unlist(cholS[gg+CGGP$uo[blocklcv,]])
VVV2 = CGGP$gridsizest[blocklcv,]
rcpp_kronDBS(VVV1, B, VVV2)
pw[IS] = pw[IS]+B
sigma2 = sigma2 + sum(B0*B)
}
}
sigma2=sigma2/length(y)
return(list(sigma2=sigma2,pw=pw,cholS=cholS, lS=lS))
}else{
numout = dim(y)[2]
sigma2 = rep(0,numout) # Predictive weight for each measured point
numout = dim(y)[2]
pw = matrix(0,nrow=dim(y)[1],ncol=numout) # Predictive weight for each measured point
# Loop over blocks selected
gg = (1:CGGP$d-1)*Q
for (blocklcv in 1:CGGP$uoCOUNT) {
if(abs(CGGP$w[blocklcv])>0.5){
IS = CGGP$dit[blocklcv, 1:CGGP$gridsizet[blocklcv]];
VVV1 = unlist(cholS[gg+CGGP$uo[blocklcv,]]);
VVV2 = CGGP$gridsizest[blocklcv,];
for(outdimlcv in 1:numout){
B0 = y[IS,outdimlcv]
B = CGGP$w[blocklcv]*B0
rcpp_kronDBS(VVV1, B, VVV2)
pw[IS,outdimlcv] = pw[IS,outdimlcv]+B
sigma2[outdimlcv] = sigma2[outdimlcv] + (t(B0)%*%B)
}
}
}
sigma2=sigma2/dim(y)[1]
return(list(sigma2=sigma2,pw=pw,cholS=cholS,lS=lS))
}
}
#' CGGP_internal_calc_cholS_lS_dsigma2_pw_dMatdtheta
#'
#' Quickly calculate cholS, lS, sigma2, dsigma2, dMatdtheta,
#' and pw. To be used within gneglogpost.
#'
#' @param CGGP CGGP object
#' @param y Measured output values
#' @param theta Correlation parameters
#'
#' @noRd
#'
#' @return List with cholS, lS, sigma2, dsigma2, dMatdtheta, and pw
# @export
#'
# @examples
CGGP_internal_calc_cholS_lS_dsigma2_pw_dMatdtheta <- function(CGGP,y,
theta) {
#We need to return pw, sigma2, dsigma2, cholS, dMatdtheta and lS
Q = max(CGGP$uo[1:CGGP$uoCOUNT,]) # Max level of all blocks
cholS = list(matrix(1,1,1),Q*CGGP$d) # To store choleskys
dMatdtheta = list(matrix(1,1,1),Q*CGGP$d)
lS = matrix(0, nrow = max(CGGP$uo[1:CGGP$uoCOUNT,]), ncol = CGGP$d) # Save log determinant of matrices
dlS = matrix(0, nrow = max(CGGP$uo[1:CGGP$uoCOUNT,]), ncol = CGGP$numpara*CGGP$d)
for (dimlcv in 1:CGGP$d) {
for (levellcv in 1:max(CGGP$uo[1:CGGP$uoCOUNT,dimlcv])) {
Xbrn = CGGP$xb[1:CGGP$sizest[levellcv]]
Xbrn = Xbrn[order(Xbrn)]
nv = length(Xbrn);
Sstuff = CGGP$CorrMat(Xbrn, Xbrn , theta[(dimlcv-1)*CGGP$numpara+1:CGGP$numpara],return_dCdtheta = TRUE)
S = Sstuff$C
cS = chol(S)
cholS[[(dimlcv-1)*Q+levellcv]] = as.matrix(cS+t(cS)-diag(diag(cS)))#store the symmetric version for C code
dMatdtheta[[(dimlcv-1)*Q+levellcv]] = -backsolve(cS,backsolve(cS,Sstuff$dCdtheta, transpose = TRUE))
for(paralcv in 1:CGGP$numpara){
dMatdtheta[[(dimlcv-1)*Q+levellcv]][1:nv,nv*(paralcv-1)+1:nv] = t(dMatdtheta[[(dimlcv-1)*Q+levellcv]][1:nv,nv*(paralcv-1)+1:nv])
}
lS[levellcv, dimlcv] = 2*sum(log(diag(cS)))
for(paralcv in 1:CGGP$numpara){
if(nv > 1.5){
dlS[levellcv, CGGP$numpara*(dimlcv-1)+paralcv] = -sum(diag(dMatdtheta[[(dimlcv-1)*Q+levellcv]][1:nv,nv*(paralcv-1)+1:nv]))
} else {
dlS[levellcv, CGGP$numpara*(dimlcv-1)+paralcv] = -dMatdtheta[[(dimlcv-1)*Q+levellcv]][1:nv,nv*(paralcv-1)+1:nv]
}
}
}
}
if(is.matrix(y)){
numout = dim(y)[2]
sigma2 = rep(0,numout) # Predictive weight for each measured point
dsigma2 = matrix(0,nrow=CGGP$numpara*CGGP$d,ncol=numout) # Predictive weight for each measured point
pw = matrix(0,nrow=dim(y)[1],ncol=numout) # Predictive weight for each measured point
gg = (1:CGGP$d-1)*Q
for (blocklcv in 1:CGGP$uoCOUNT) {
if(abs(CGGP$w[blocklcv])>0.5){
IS = CGGP$dit[blocklcv, 1:CGGP$gridsizet[blocklcv]];
VVV1=unlist(cholS[gg+CGGP$uo[blocklcv,]])
VVV2=unlist(dMatdtheta[gg+CGGP$uo[blocklcv,]])
VVV3=CGGP$gridsizest[blocklcv,]
for(outdimlcv in 1:numout){
B0 = y[IS,outdimlcv]
B = CGGP$w[blocklcv]*B0
dB = rcpp_gkronDBS(VVV1,VVV2,B,VVV3)
pw[IS,outdimlcv] = pw[IS,outdimlcv]+B
dsigma2[,outdimlcv] = dsigma2[,outdimlcv] + as.vector(dB%*%B0)
sigma2[outdimlcv] = sigma2[outdimlcv] + sum(B0*B)
}
}
}
out <- list(sigma2=sigma2/dim(y)[1],dsigma2=dsigma2/dim(y)[1],lS=lS,dlS=dlS,pw=pw,cholS=cholS,dMatdtheta=dMatdtheta)
}else{
sigma2 = 0 # Predictive weight for each measured point
dsigma2 = rep(0,nrow=CGGP$d) # Predictive weight for each measured point
gg = (1:CGGP$d-1)*Q
pw = rep(0, length(y)) # Predictive weight for each measured point
for (blocklcv in 1:CGGP$uoCOUNT) {
if(abs(CGGP$w[blocklcv])>0.5){
IS = CGGP$dit[blocklcv, 1:CGGP$gridsizet[blocklcv]];
B0 = y[IS]
B = CGGP$w[blocklcv]*B0
dB = rcpp_gkronDBS(unlist(cholS[gg+CGGP$uo[blocklcv,]]),unlist(dMatdtheta[gg+CGGP$uo[blocklcv,]]), B, CGGP$gridsizest[blocklcv,])
pw[IS] = pw[IS]+B
dsigma2 = dsigma2 +t(B0)%*%t(dB)
sigma2 = sigma2 + t(B0)%*%B
}
}
out <- list(sigma2=sigma2/length(y),dsigma2=dsigma2/length(y),lS=lS,dlS=dlS,pw=pw,cholS=cholS,dMatdtheta=dMatdtheta)
}
out
}
#' CGGP_internal_calc_dvalo
#'
#' Quickly calculate valo and dvalo. To be used within gneglogpost.
#'
#' @param CGGP CGGP object
#' @param revc Input from a previous calculation
#' @param y Measured output values
#' @param cholS Cholesky factorizations
#' @param dMatdtheta Input from a previous calculation
#'
#' @noRd
#'
#' @return List with valo and dvalo
# @export
#'
# @examples
CGGP_internal_calc_dvalo <- function(CGGP,revc,y,cholS,dMatdtheta) {
Q = max(CGGP$uo[1:CGGP$uoCOUNT,]) # Max level of all blocks
if(is.matrix(y)){
numout = dim(y)[2]
valo = rep(0,numout) # Predictive weight for each measured point
dvalo = matrix(0,nrow=CGGP$numpara*CGGP$d,ncol=numout) # Predictive weight for each measured point
gg = (1:CGGP$d-1)*Q
for (blocklcv in 1:CGGP$uoCOUNT) {
if(abs(CGGP$w[blocklcv])>0.5){
IS = CGGP$dit[blocklcv, 1:CGGP$gridsizet[blocklcv]];
VVV1=unlist(cholS[gg+CGGP$uo[blocklcv,]])
VVV2=unlist(dMatdtheta[gg+CGGP$uo[blocklcv,]])
VVV3=CGGP$gridsizest[blocklcv,]
for(outdimlcv in 1:numout){
B2 = y[IS,outdimlcv]
B0 = revc[IS,outdimlcv]
B = (CGGP$w[blocklcv])*B0#/dim(y)[1]
dB = rcpp_gkronDBS(VVV1,VVV2,B,VVV3)
dvalo[,outdimlcv] = dvalo[,outdimlcv] +t(B2)%*%t(dB)
valo[outdimlcv] = valo[outdimlcv] + sum(B2*B)+ t(B2)%*%B
}
}
}
out <- list(valo=valo,dvalo=dvalo)
}else{
valo= 0 # Predictive weight for each measured point
dvalo = rep(0,nrow=CGGP$d) # Predictive weight for each measured point
gg = (1:CGGP$d-1)*Q
for (blocklcv in 1:CGGP$uoCOUNT) {
if(abs(CGGP$w[blocklcv])>0.5){
IS = CGGP$dit[blocklcv, 1:CGGP$gridsizet[blocklcv]];
B0 = revc[IS]
B2 = y[IS]
B = (CGGP$w[blocklcv])*B0#/length(y)
dB = rcpp_gkronDBS(unlist(cholS[gg+CGGP$uo[blocklcv,]]),unlist(dMatdtheta[gg+CGGP$uo[blocklcv,]]), B, CGGP$gridsizest[blocklcv,])
dvalo = dvalo + as.vector(dB%*%B2)
valo = valo + sum(B2*B)
}
}
out <- list(valo=valo,dvalo=dvalo)
}
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.