summariseByFeaturePairs | R Documentation |
This function will calculate the number of observed interactions between two sets of features provided by the end-user. This allows the summarisation of the number of features of a specific type a particular region is involved in and how many interactions exist between them.
summariseByFeaturePairs( GIObject, features.one, feature.name.one, features.two, feature.name.two ) ## S4 method for signature 'GInteractions' summariseByFeaturePairs( GIObject, features.one, feature.name.one, features.two, feature.name.two )
GIObject |
An annotated GInteractions object |
features.one |
A GRanges object containing the feature set of interest |
feature.name.one |
The name of the first feature set of interest |
features.two |
A GRanges object containing the second feature set of interest |
feature.name.two |
The name of the second feature set of interest |
A data frame with one line for each range in ‘features’
data('hic_example_data') data('mm9_refseq_promoters') data('thymus_enhancers') annotateInteractions(hic_example_data, list(promoter = mm9_refseq_promoters, enhancer = thymus_enh)) # can be slow so subset of features used for examples p <- unique(unlist(head(regions(hic_example_data)$promoter.id))) e <- unique(unlist(head(regions(hic_example_data)$enhancer.id))) p <- p[!is.na(p)] p <- mm9_refseq_promoters[p] e <- e[!is.na(e)] e <- thymus_enh[e] ep_summary <- summariseByFeaturePairs(hic_example_data, p, 'promoter', e, 'enhancer')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.