View source: R/stability-3-graph-clustering.R
plot_k_n_partitions | R Documentation |
For each configuration provided in clust_object, display how many different partitions with the same number of clusters can be obtained by changing the seed.
plot_k_n_partitions(
clust_object,
colour_information = c("ecc", "freq_part"),
dodge_width = 0.3,
pt_size_range = c(1.5, 4),
summary_function = stats::median,
y_step = 5
)
clust_object |
An object returned by the
|
colour_information |
String that specifies the information type that will be
illustrated using gradient colour: either |
dodge_width |
Used for adjusting the distance between the boxplots representing
a clustering method. Defaults to |
pt_size_range |
Indicates the minimum and the maximum size a point on the plot can have.
Defaults to |
summary_function |
The function that will be used to summarize the
distribution of the ECC values obtained for each number of clusters. Defaults
to |
y_step |
The step used for the y-axis. Defaults to |
A ggplot2 object. The color gradient suggests the frequency of the most common partition relative to the total number of appearances of that specific number of clusters or the Element-Centric Consistency of the partitions. The size illustrates the frequency of the partitions with k clusters relative to the total number of partitions. The shape of the points indicates the clustering method.
set.seed(2024)
# create an artificial PCA embedding
pca_embedding <- matrix(runif(100 * 30), nrow = 100)
rownames(pca_embedding) <- paste0("cell_", seq_len(nrow(pca_embedding)))
colnames(pca_embedding) <- paste0("PC_", 1:30)
adj_matrix <- getNNmatrix(
RANN::nn2(pca_embedding, k = 10)$nn.idx,
10,
0,
-1
)$nn
rownames(adj_matrix) <- paste0("cell_", seq_len(nrow(adj_matrix)))
colnames(adj_matrix) <- paste0("cell_", seq_len(ncol(adj_matrix)))
# alternatively, the adj_matrix can be calculated
# using the `Seurat::FindNeighbors` function.
clust_diff_obj <- assess_clustering_stability(
graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
clustering_algorithm = 1:2,
verbose = FALSE
)
plot_k_n_partitions(clust_diff_obj)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.