#This script is a unit test to ensure that RF_optimal_train produces expected outputs
test_that("RF_optimal_train", {
library("RFRF")
#declare our expected input variables
number_of_training_participants <- 10
number_of_testing_participants <- 10
covariance_matrix <- diag(2)
outcome_column <- 1
means <- c(0,0)
formula = y~x
mtry <- 1
nodesize <- 1
proximity_flag = TRUE
model_type = "rfsrc"
#create simulated data for the RF_train
training_dataset <- simulate_data(number_of_training_participants,covariance_matrix,outcome_column,means)
testing_dataset <- simulate_data(number_of_testing_participants,covariance_matrix,outcome_column,means)
#train the RF model
random_forest <- RF_train(training_dataset,formula,mtry,nodesize)
#return optimal RF parameters using RF_test
Optimal_RF_Parameters <- RF_test(random_forest, testing_dataset, proximity_flag)
#train using optimal RF parameters with RF optimal train
optimal_random_forest <- RF_optimal_train(training_dataset,formula,Optimal_RF_Parameters,model_type)
#check the outputs
expect_type(optimal_random_forest$call, "language")
expect_type(optimal_random_forest$mtry, "double")
expect_true(optimal_random_forest$mtry >= 0)
expect_type(optimal_random_forest$nodesize, "double")
expect_true(optimal_random_forest$nodesize >= 0)
expect_type(optimal_random_forest$yvar, "double")
expect_true(is.vector(optimal_random_forest$yvar))
expect_type(optimal_random_forest$yvar.names, "character")
expect_true(is.data.frame(optimal_random_forest$xvar))
expect_type(optimal_random_forest$xvar.names, "character")
expect_true(optimal_random_forest$forest$forest)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.