# This script generates the GIS features and tables and saves to a geodatabase
library(arcgisbinding)
library(sf)
library(dplyr)
library(readxl)
library(odeqtmdl)
arc.check_product()
# Read paths
paths <- readxl::read_excel(path = "data_raw/project_paths.xlsx",
sheet = "paths" , col_names = TRUE,
na = c("", "NA"),
col_types = c('text', 'text'))
# nhd_fc
load(file.path(paths$package_path[1], "data_raw", "nhd_fc.rda"))
# au_wb_fc
load(file = file.path(paths$package_path[1], "data_raw", "au_wb_fc.rda"))
# tmdl_reaches
tmdl_reaches <- tmdl_reaches()
gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb")
pastee <- function(x) {paste(sort(na.omit(unique(x))), collapse = "; ")}
# - Create Base features -------------------------------------------------------
# unique list of GLOBALIDs where TMDLs apply
tmdl_gids <- dplyr::filter(tmdl_reaches, TMDL_scope %in% c("TMDL",
"Allocation only",
"Advisory Allocation")) %>%
dplyr::pull(GLOBALID) %>%
unique() %>%
sort()
tmdl_scope_gids <- dplyr::filter(tmdl_reaches, TMDL_scope == "TMDL") %>%
dplyr::pull(GLOBALID) %>%
unique() %>%
sort()
# unique list of AU IDs where TMDLs or TMDL allocations apply
tmdl_au_ids <- sort(unique(odeqtmdl::tmdl_au$AU_ID))
# unique list of AU IDs where TMDLs apply
tmdl_scope_au_ids <- dplyr::filter(odeqtmdl::tmdl_au, TMDL_scope == "TMDL") %>%
dplyr::pull(AU_ID) %>%
unique() %>%
sort()
geo_ids_gids <- dplyr::filter(tmdl_reaches, !is.na(geo_id)) %>%
dplyr::pull(GLOBALID) %>%
unique() %>%
sort()
# filter nhd to only where TMDLs apply
tmdl_reach_fc <- nhd_fc %>%
dplyr::filter(GLOBALID %in% tmdl_gids) %>%
dplyr::filter(!AU_ID == "99") %>%
dplyr::select(AU_ID, AU_Name, AU_Description, AU_WBType, GNIS_ID, GNIS_Name,
HUC12,
AU_GNIS, AU_GNIS_Name, GLOBALID, Permanent_Identifier,
WBArea_Permanent_Identifier, FType)
# Dissolve to geo_ids
tmdl_geo_id_fc <- nhd_fc %>%
dplyr::filter(GLOBALID %in% geo_ids_gids) %>%
dplyr::select(AU_ID, AU_Name, AU_Description, AU_WBType, GNIS_ID, GNIS_Name,
AU_GNIS, AU_GNIS_Name, GLOBALID)
# Dissolve to AUs
tmdl_au_fc <- tmdl_reach_fc %>%
dplyr::filter(GLOBALID %in% tmdl_scope_gids) %>%
dplyr::group_by(AU_ID, AU_Name, AU_Description, AU_WBType) %>%
dplyr::summarize() %>%
ungroup()
# Dissolve to AU GNIS
tmdl_au_gnis_fc <- tmdl_reach_fc %>%
dplyr::filter(GLOBALID %in% tmdl_scope_gids) %>%
dplyr::filter(grepl("_WS", AU_ID, fixed = TRUE)) %>%
dplyr::group_by(AU_ID, AU_Name, AU_GNIS_Name, AU_GNIS, AU_WBType) %>%
dplyr::summarize() %>%
ungroup()
# AU Waterbodies
tmdl_au_wb_fc <- au_wb_fc %>%
dplyr::filter(AU_ID %in% tmdl_au_ids)
save(tmdl_reach_fc, file = file.path(paths$package_path[1], "data_raw", "tmdl_reach_fc.rda"))
save(tmdl_geo_id_fc, file = file.path(paths$package_path[1], "data_raw", "tmdl_geo_id_fc.rda"))
save(tmdl_au_fc, file = file.path(paths$package_path[1], "data_raw", "tmdl_au_fc.rda"))
save(tmdl_au_gnis_fc, file = file.path(paths$package_path[1], "data_raw", "tmdl_au_gnis_fc.rda"))
save(tmdl_au_wb_fc, file = file.path(paths$package_path[1], "data_raw", "tmdl_au_wb_fc.rda"))
rm(tmdl_au_gnis_fc, tmdl_reach_fc, tmdl_gids, tmdl_scope_gids, geo_ids_gids)
# -load base features----------------------------------------------------------
#tmdl_ndh_fc
load(file = file.path(paths$package_path[1], "data_raw", "tmdl_reach_fc.rda"))
# tmdl_au_fc
load(file = file.path(paths$package_path[1], "data_raw", "tmdl_au_fc.rda"))
# tmdl_au_wb_fc
load(file = file.path(paths$package_path[1], "data_raw", "tmdl_au_wb_fc.rda"))
# tmdl_au
#load(file.path(paths$package_path[1], "data", "tmdl_au.rda"))
#- TMDLs by reach Flat --------------------------------------------------------------
# ~30 min`
time_start1 <- Sys.time()
gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb")
fc_name <- "TMDLs_by_NHD_reach_flat"
# This version separates pollutants by TMDL scope.
df1 <- tmdl_reaches %>%
dplyr::filter(!AU_ID == "99") %>%
dplyr::left_join(odeqtmdl::tmdl_parameters[,c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant", "TMDL_status")],
by = c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant")) %>%
dplyr::filter(TMDL_status == "Active") %>%
dplyr::left_join(odeqtmdl::tmdl_actions[,c("action_id", "TMDL_name", "citation_abbreviated")], by = "action_id") %>%
dplyr::mutate(TMDL_name = paste0(TMDL_name," (",citation_abbreviated,")"),
Scope_TMDL = if_else(TMDL_scope == "TMDL", TMDL_pollutant, NA_character_),
Scope_Allocation_only = if_else(TMDL_scope == "Allocation only", TMDL_pollutant, NA_character_),
Scope_Advisory_allocation = if_else(TMDL_scope == "Advisory allocation", TMDL_pollutant, NA_character_)) %>%
group_by(GLOBALID, HUC6, HUC6_Name, HUC6_full, HUC8, HUC8_Name, HUC8_full) %>%
summarize(action_ids = pastee(action_id),
TMDL_names = pastee(TMDL_name),
TMDL_wq_limited_parameters = pastee(TMDL_wq_limited_parameter),
TMDL_pollutants = pastee(TMDL_pollutant),
Scope_TMDL = pastee(Scope_TMDL),
Scope_Allocation_only = pastee(Scope_Allocation_only),
Scope_Advisory_allocation = pastee(Scope_Advisory_allocation),
TMDL_status = pastee(TMDL_status),
geo_id = pastee(geo_id)) %>%
ungroup() %>%
mutate(Scope_TMDL = na_if(Scope_TMDL, ""),
Scope_Allocation_only = na_if(Scope_Allocation_only, ""),
Scope_Advisory_allocation = na_if(Scope_Advisory_allocation, ""),
geo_id = na_if(geo_id, ""))
# This version does not separate pollutants by TMDL scope. So it is not clear which pollutants are allocation only vs TMDL.
# df1 <- tmdl_reaches %>%
# dplyr::filter(!AU_ID == "99") %>%
# dplyr::filter(TMDL_scope == "TMDL") %>%
# dplyr::left_join(odeqtmdl::tmdl_parameters[,c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant", "TMDL_status")],
# by = c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant")) %>%
# dplyr::filter(TMDL_status == "Active") %>%
# dplyr::left_join(odeqtmdl::tmdl_actions[,c("action_id", "TMDL_name", "citation_abbreviated")], by = "action_id") %>%
# dplyr::mutate(TMDL_name = paste0(TMDL_name," (",citation_abbreviated,")")) %>%
# group_by(GLOBALID, HUC_6, HU_6_NAME, HUC6_full, HUC_8, HU_8_NAME, HUC8_full) %>%
# summarize(action_ids = pastee(action_id),
# TMDL_names = pastee(TMDL_name),
# TMDL_wq_limited_parameters = pastee(TMDL_wq_limited_parameter),
# TMDL_pollutants = pastee(TMDL_pollutant),
# TMDL_scope = pastee(TMDL_scope),
# TMDL_status = pastee(TMDL_status),
# geo_id = pastee(geo_id))
tmdls_by_reach <- nhd_fc %>%
dplyr::select(AU_ID, GLOBALID, Permanent_Identifier, ReachCode,
WBArea_Permanent_Identifier,
FType,
GNIS_Name,
GNIS_ID,
AU_ID,
AU_Name,
AU_Description,
AU_WBType,
AU_GNIS_Name,
AU_GNIS,
LengthKM) %>%
dplyr::inner_join(y = df1, by = "GLOBALID") %>%
dplyr::select(action_ids,
TMDL_names,
TMDL_wq_limited_parameters,
any_of(c("TMDL_pollutants",
"TMDL_scope",
"Scope_TMDL",
"Scope_Allocation_only",
"Scope_Advisory_allocation")),
TMDL_status,
geo_id,
HUC6,
HUC6_Name,
HUC6_full,
HUC8,
HUC8_Name,
HUC8_full,
GLOBALID,
Permanent_Identifier,
ReachCode,
WBArea_Permanent_Identifier,
FType,
GNIS_Name,
GNIS_ID,
AU_ID,
AU_Name,
AU_Description,
AU_WBType,
AU_GNIS_Name,
AU_GNIS,
LengthKM)
arc.write(path = file.path(gdb_path, fc_name),
data = tmdls_by_reach,
validate = TRUE,
overwrite = TRUE)
time_end1 <- Sys.time()
time_end1 - time_start1
rm(df1, tmdls_by_reach)
#- TMDLs by AU Flowline flattened-----------------------------------------------
time_start2 <- Sys.time()
fc_name <- "TMDLs_by_AU_floline_flat"
gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb")
df2 <- odeqtmdl::tmdl_au %>%
dplyr::filter(!AU_ID == "99") %>%
dplyr::filter(TMDL_scope == "TMDL") %>%
dplyr::left_join(odeqtmdl::tmdl_parameters[,c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant", "TMDL_status")],
by = c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant")) %>%
dplyr::filter(TMDL_status == "Active") %>%
dplyr::left_join(odeqtmdl::tmdl_actions[,c("action_id", "TMDL_name", "citation_abbreviated")], by = "action_id") %>%
dplyr::mutate(TMDL_name = paste0(TMDL_name," (",citation_abbreviated,")")) %>%
group_by(AU_ID, HUC6, HUC6_Name, HUC6_full, HUC8, HUC8_Name, HUC8_full) %>%
summarize(action_ids = pastee(action_id),
TMDL_names = pastee(TMDL_name),
TMDL_wq_limited_parameters = pastee(TMDL_wq_limited_parameter),
TMDL_pollutants = pastee(TMDL_pollutant),
TMDL_scope = pastee(TMDL_scope),
TMDL_status = pastee(TMDL_status))
tmdls_by_au_flat <- tmdl_au_fc %>%
dplyr::inner_join(y = df2, by = "AU_ID") %>%
dplyr::select(action_ids,
TMDL_names,
TMDL_wq_limited_parameters,
TMDL_pollutants,
TMDL_scope,
TMDL_status,
HUC6,
HUC6_Name,
HUC6_full,
HUC8,
HUC8_Name,
HUC8_full,
AU_ID,
AU_Name,
AU_Description,
AU_WBType,
Shape)
arc.write(path = file.path(gdb_path, fc_name),
data = tmdls_by_au_flat,
validate = TRUE,
overwrite = TRUE)
time_end2 <- Sys.time()
time_end2 - time_start2
rm(df2, tmdls_by_au_flat)
#- TMDLs by AU Waterbody Flat --------------------------------------------------
time_start2 <- Sys.time()
fc_name <- "TMDLs_by_AU_Waterbody_flat"
gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb")
df3 <- odeqtmdl::tmdl_au %>%
dplyr::filter(!AU_ID == "99") %>%
dplyr::filter(TMDL_scope == "TMDL") %>%
dplyr::left_join(odeqtmdl::tmdl_parameters[,c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant", "TMDL_status")],
by = c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant")) %>%
dplyr::filter(TMDL_status == "Active") %>%
dplyr::left_join(odeqtmdl::tmdl_actions[,c("action_id", "TMDL_name", "citation_abbreviated")], by = "action_id") %>%
dplyr::mutate(TMDL_name = paste0(TMDL_name," (",citation_abbreviated,")")) %>%
group_by(AU_ID, HUC6, HUC6_Name, HUC6_full, HUC8, HUC8_Name, HUC8_full) %>%
summarize(action_ids = pastee(action_id),
TMDL_names = pastee(TMDL_name),
TMDL_wq_limited_parameters = pastee(TMDL_wq_limited_parameter),
TMDL_pollutants = pastee(TMDL_pollutant),
TMDL_scope = pastee(TMDL_scope),
TMDL_status = pastee(TMDL_status))
tmdls_by_wb_au_flat <- tmdl_au_wb_fc %>%
dplyr::inner_join(y = df3, by = "AU_ID") %>%
dplyr::select(action_ids,
TMDL_names,
TMDL_wq_limited_parameters,
TMDL_pollutants,
TMDL_scope,
TMDL_status,
HUC6,
HUC6_Name,
HUC6_full,
HUC8,
HUC8_Name,
HUC8_full,
AU_ID,
AU_Name,
AU_Description,
AU_WBType,
Shape)
arc.write(path = file.path(gdb_path, fc_name),
data = tmdls_by_wb_au_flat,
validate = TRUE,
overwrite = TRUE)
time_end2 <- Sys.time()
time_end2 - time_start2
rm(df3, tmdls_by_wb_au_flat)
#- TMDLs by AU flowline Not Flat -----------------------------------------------
time_start2 <- Sys.time()
fc_name <- "TMDLs_by_AU_flowline"
gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb")
df4 <- odeqtmdl::tmdl_au %>%
dplyr::filter(!AU_ID == "99") %>%
dplyr::left_join(odeqtmdl::tmdl_parameters[,c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant", "TMDL_status")],
by = c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant")) %>%
dplyr::filter(TMDL_status == "Active") %>%
dplyr::left_join(odeqtmdl::tmdl_actions[,c("action_id", "TMDL_name",
"TMDL_issue_date", "EPA_action_date",
"citation_abbreviated")], by = "action_id") %>%
dplyr::mutate(TMDL_issue_date = as.POSIXct(TMDL_issue_date),
EPA_action_date = as.POSIXct(EPA_action_date)) %>%
dplyr::select(-dplyr::any_of(c("AU_Name","AU_Description")))
tmdls_by_au <- tmdl_au_fc %>%
dplyr::inner_join(y = df4, by = "AU_ID") %>%
dplyr::select(action_id,
TMDL_name,
TMDL_wq_limited_parameter,
TMDL_pollutant,
TMDL_scope,
Period,
Source,
TMDL_status,
TMDL_issue_date,
EPA_action_date,
Pollu_ID,
HUC6,
HUC6_Name,
HUC6_full,
HUC8,
HUC8_Name,
HUC8_full,
AU_ID,
AU_Name,
AU_Description,
AU_WBType,
TMDL_length_km,
Allocation_only_km,
Advisory_allocation_km,
AU_length_km,
TMDL_AU_Percent,
Allocation_AU_Percent,
Shape)
arc.write(path = file.path(gdb_path, fc_name),
data = tmdls_by_au,
validate = TRUE,
overwrite = TRUE)
time_end2 <- Sys.time()
time_end2 - time_start2
rm(df4, tmdls_by_au)
#- TMDLs by AU Waterbody Not Flat ----------------------------------------------
time_start2 <- Sys.time()
fc_name <- "TMDLs_by_AU_Waterbody"
gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb")
df5 <- odeqtmdl::tmdl_au %>%
dplyr::filter(!AU_ID == "99") %>%
dplyr::left_join(odeqtmdl::tmdl_parameters[,c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant", "TMDL_status")],
by = c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant")) %>%
dplyr::filter(TMDL_status == "Active") %>%
dplyr::left_join(odeqtmdl::tmdl_actions[,c("action_id", "TMDL_name",
"TMDL_issue_date", "EPA_action_date",
"citation_abbreviated")], by = "action_id") %>%
dplyr::mutate(TMDL_issue_date = as.POSIXct(TMDL_issue_date),
EPA_action_date = as.POSIXct(EPA_action_date)) %>%
dplyr::select(-dplyr::any_of(c("AU_Name","AU_Description")))
tmdls_by_au_wb <- tmdl_au_wb_fc %>%
dplyr::inner_join(y = df5, by = "AU_ID") %>%
dplyr::select(action_id,
TMDL_name,
TMDL_wq_limited_parameter,
TMDL_pollutant,
TMDL_scope,
Period,
Source,
TMDL_status,
TMDL_issue_date,
EPA_action_date,
Pollu_ID,
HUC6,
HUC6_Name,
HUC6_full,
HUC8,
HUC8_Name,
HUC8_full,
AU_ID,
AU_Name,
AU_Description,
AU_WBType,
TMDL_length_km,
Allocation_only_km,
Advisory_allocation_km,
AU_length_km,
TMDL_AU_Percent,
Allocation_AU_Percent,
Shape)
arc.write(path = file.path(gdb_path, fc_name),
data = tmdls_by_au_wb,
validate = TRUE,
overwrite = TRUE)
time_end2 <- Sys.time()
time_end2 - time_start2
rm(df5, tmdls_by_au_wb)
#- geo IDs ---------------------------------------------------------------------
fc_name <- "geo_ids"
gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb")
tmdl_reach_geo_ids_only <- dplyr::filter(tmdl_reaches, !is.na(geo_id)) %>%
left_join(odeqtmdl::tmdl_parameters[,c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant", "TMDL_status")],
by = c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant")) %>%
filter(TMDL_status == "Active") %>%
select(geo_id, HUC6, HUC6_Name, HUC6_full, HUC8, HUC8_Name, HUC8_full, GLOBALID) %>%
distinct()
tmdl_geo_ids <- tmdl_geo_id_fc %>%
inner_join(y = tmdl_reach_geo_ids_only, by = "GLOBALID") %>%
group_by(geo_id, HUC6, HUC6_Name, HUC6_full, HUC8, HUC8_Name, HUC8_full,
AU_ID, AU_Name, AU_Description, AU_WBType,
AU_GNIS, AU_GNIS_Name) %>%
summarize() %>%
ungroup() %>%
arrange(geo_id, AU_ID, AU_GNIS)
arc.write(path = file.path(gdb_path, fc_name),
data = tmdl_geo_ids,
validate = TRUE,
overwrite = TRUE)
#- Write Tables ----------------------------------------------------------------
# ~1.2 hours
time_start3 <- Sys.time()
gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb")
arc.write(path = file.path(gdb_path, "tmdl_actions"),
data = odeqtmdl::tmdl_actions %>% mutate(TMDL_issue_date = as.POSIXct(TMDL_issue_date),
EPA_action_date = as.POSIXct(EPA_action_date)) %>%
select(-in_attains, -attains_status),
overwrite = TRUE)
arc.write(path = file.path(gdb_path, "tmdl_au_gnis"),
data = odeqtmdl::tmdl_au_gnis,
overwrite = TRUE)
arc.write(path = file.path(gdb_path, "tmdl_au"),
data = odeqtmdl::tmdl_au,
overwrite = TRUE)
arc.write(path = file.path(gdb_path, "tmdl_geo_ids"),
data = odeqtmdl::tmdl_geo_ids,
overwrite = TRUE)
arc.write(path = file.path(gdb_path, "tmdl_parameters"),
data = odeqtmdl::tmdl_parameters,
overwrite = TRUE)
arc.write(path = file.path(gdb_path, "tmdl_targets"),
data = odeqtmdl::tmdl_targets,
overwrite = TRUE)
arc.write(path = file.path(gdb_path, "tmdl_reaches"),
data = tmdl_reaches,
overwrite = TRUE)
time_start <- Sys.time()
time_end3 <- Sys.time()
time_end3 - time_start3
#- Outputs by TMDL parameter ---------------------------------------------------
# ~ 2 hours
sort(unique(tmdl_reaches$TMDL_wq_limited_parameter))
# Time -------------------------------------------------------------------------
time_end3 - time_start1
#- Outputs by TMDL pollutant ---------------------------------------------------
# sort(unique(tmdl_reaches$TMDL_pollutant))
#
# pollu_names <- c(
# "Ammonia Nitrogen (NH3-N)" = "Ammonia_Nitrogen",
# "Ammonium (NH4-N)" = "Ammonium",
# "Biochemical Oxygen Demand" = "BOD",
# "Biochemical Oxygen Demand (5-day)" = "BOD5",
# "Carbonaceous Biochemical Oxygen Demand" = "CBOD",
# "Carbonaceous Biochemical Oxygen Demand (5-day)" = "CBOD5",
# "Chlordane" = "Chlordane",
# "DDD 4,4'" = "DDD",
# "DDE 4,4'" = "DDE",
# "DDT 4,4'" = "DDT",
# "Dieldrin" = "Dieldrin",
# "Dioxin (2,3,7,8-TCDD)" = "Dioxin",
# "Dissolved Inorganic Nitrogen" = "DIN",
# "Dissolved Orthophosphate as Phosphorus" = "Dissolved_Orthophosphate",
# "Dissolved Oxygen" = "Dissolved_Oxygen",
# "E. coli" = "Ecoli",
# "Fecal Coliform" = "Fecal_Coliform",
# "Fine Sediment" = "Fine_Sediment",
# "Heat" = "Heat",
# "Inorganic Phosphorus" = "Inorganic_Phosphorus",
# "Iron (total)" = "Iron",
# "Lead" = "Lead",
# "Mercury (total)" = "Mercury",
# "Methylmercury" = "Methylmercury",
# "Nitrates" = "Nitrates",
# "Nitrite + Nitrate, as N (NO23-N)" = "Nitrite_Nitrate",
# "pH" = "pH",
# "Polychlorinated Biphenyls (PCBs)" = "PCBs",
# "Sediment Oxygen Demand" = "SOD",
# "Sedimentation" = "Sedimentation",
# "Solar Radiation" = "Solar_Radiation",
# "Total Dissolved gas" = "TDG",
# "Total Nitrogen" = "Total_Nitrogen",
# "Total Phosphorus" = "Total_Phosphorus",
# "Total suspended solids" = "TSS",
# "Turbidity" = "Turbidity",
# "Ultimate Biochemical Oxygen Demand" = "UBOD",
# "Volatile Solids" = "Volatile_Solids",
# "Volatile Suspended Solids" = "Volatile_Suspended_Solids"
# )
#
# TMDL_pollus <- names(pollu_names)
#
# TMDL_pollus <- tmdl_reaches %>%
# filter(!AU_ID == "99") %>%
# left_join(odeqtmdl::tmdl_parameters[,c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant", "TMDL_status")],
# by = c("action_id", "TMDL_wq_limited_parameter", "TMDL_pollutant")) %>%
# filter(TMDL_status == "Active") %>%
# select(TMDL_pollutant) %>%
# distinct() %>%
# pull(TMDL_pollutant) %>% sort()
#
# gdb_path <- file.path(paths$tmdl_reaches_shp[1], "Maps", "web_map", "OR_TMDLs.gdb/TMDLs_by_pollutant")
#
# for (pollu in TMDL_pollus) {
#
# print(pollu)
#
# gdb_fc <- paste0("pollutant_", pollu_names[[pollu]])
# odeqtmdl::tmdl_export_gdb(gdb_path = gdb_path, gdb_fc = gdb_fc,
# nhd_fc = nhd_fc, tmdl_reaches = tmdl_reaches,
# TMDL_param = NULL, TMDL_pollu = pollu)
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.