#' @name discrete.BH
#'
#' @title
#' The Discrete Benjamini-Hochberg Procedure
#'
#' @description
#' Applies the \[HSU\], \[HSD\], \[AHSU\] and \[AHSD\] procedures at a given FDR
#' level, with or without computing the critical constants, to a set of p-values
#' and their respective discrete supports.
#'
#' @details
#' The adaptive variants \[AHSU\] and \[AHSD\], which are executed via
#' `adaptive = TRUE`, are often slightly more powerful than \[HSU\] and \[HSD\],
#' respectively. But they are also computationally more demanding.
#' @template details_crit
#'
#' @seealso
#' [`DBH()`], [`ADBH()`], [`DBR()`], [`DBY()`]
#'
#' @templateVar test.results TRUE
#' @templateVar pCDFlist TRUE
#' @templateVar alpha TRUE
#' @templateVar direction TRUE
#' @templateVar adaptive TRUE
#' @templateVar ret.crit.consts TRUE
#' @templateVar select.threshold TRUE
#' @templateVar pCDFlist.indices TRUE
#' @templateVar triple.dots TRUE
#' @template param
#'
#' @templateVar DBR FALSE
#' @template return
#'
#' @references
#' Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete
#' and heterogeneous tests. *Electronic Journal of Statistics*, *12*(1),
#' pp. 1867-1900. \doi{10.1214/18-EJS1441}
#'
#' @template exampleGPV
#' @examples
#' # DBH (step-up) without critical values; using test results object
#' DBH.su.fast <- discrete.BH(test.result)
#' summary(DBH.su.fast)
#'
#' # DBH (step-down) without critical values; using extracted p-values
#' # and supports
#' DBH.sd.fast <- discrete.BH(raw.pvalues, pCDFlist, direction = "sd")
#' summary(DBH.sd.fast)
#'
#' # DBH (step-up) with critical values; using extracted p-values and supports
#' DBH.su.crit <- discrete.BH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
#' summary(DBH.su.crit)
#'
#' # DBH (step-down) with critical values; using test results object
#' DBH.sd.crit <- discrete.BH(test.result, direction = "sd",
#' ret.crit.consts = TRUE)
#' summary(DBH.sd.crit)
#'
#' # ADBH (step-up) without critical values; using test results object
#' ADBH.su.fast <- discrete.BH(test.result, adaptive = TRUE)
#' summary(ADBH.su.fast)
#'
#' # ADBH (step-down) without critical values; using extracted p-values
#' # and supports
#' ADBH.sd.fast <- discrete.BH(raw.pvalues, pCDFlist, direction = "sd",
#' adaptive = TRUE)
#' summary(ADBH.sd.fast)
#'
#' # ADBH (step-up) with critical values; using extracted p-values and supports
#' ADBH.su.crit <- discrete.BH(raw.pvalues, pCDFlist, adaptive = TRUE,
#' ret.crit.consts = TRUE)
#' summary(ADBH.su.crit)
#'
#' # ADBH (step-down) with critical values; using test results object
#' ADBH.sd.crit <- discrete.BH(test.result, direction = "sd", adaptive = TRUE,
#' ret.crit.consts = TRUE)
#' summary(ADBH.sd.crit)
#'
#' @export
discrete.BH <- function(test.results, ...) UseMethod("discrete.BH")
#' @rdname discrete.BH
#' @importFrom checkmate assert_character assert_integerish assert_numeric
#' @importFrom checkmate assert_list qassert
#' @export
discrete.BH.default <- function(
test.results,
pCDFlist,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...
) {
#----------------------------------------------------
# check arguments
#----------------------------------------------------
# raw p-values
qassert(x = test.results, rules = "N+[0, 1]")
n <- length(test.results)
# list structure of p-value distributions
assert_list(
x = pCDFlist,
types = "numeric",
any.missing = FALSE,
min.len = 1,
max.len = n
)
# individual p-value distributions
for(i in seq_along(pCDFlist)){
assert_numeric(
x = pCDFlist[[i]],
lower = 0,
upper = 1,
any.missing = FALSE,
min.len = 1,
sorted = TRUE
)
#if(max(pCDFlist[[i]]) != 1)
# stop("Last value of each vector in 'pCDFlist' must be 1!")
}
m <- length(pCDFlist)
# significance level
qassert(x = alpha, rules = "N1(0, 1]")
# step-up/step-down direction
assert_character(
x = direction,
n.chars = 2,
len = 1,
any.missing = FALSE
)
direction <- match.arg(tolower(direction), c("su", "sd"))
# adaptiveness
qassert(adaptive, "B1")
# compute and return critical values?
qassert(ret.crit.consts, "B1")
# selection threshold
qassert(x = select.threshold, rules = "N1(0, 1]")
# list structure of indices
assert_list(
x = pCDFlist.indices,
types = "numeric",
any.missing = FALSE,
len = m,
unique = TRUE,
null.ok = TRUE
)
# individual index vectors (if not NULL)
if(is.null(pCDFlist.indices)) {
if(n != m){
stop(
paste(
"If no indices for the p-value CDFs are provided, the lengths of",
"'test.results' and 'pCDFlist' must be equal!"
)
)
}
pCDFlist.indices <- as.list(seq_len(n))
pCDFlist.counts <- rep(1, n)
} else {
set <- seq_len(n)
for(i in seq_along(pCDFlist.indices)){
pCDFlist.indices[[i]] <- assert_integerish(
x = pCDFlist.indices[[i]],
lower = 1,
upper = n,
any.missing = FALSE,
min.len = 1,
max.len = n,
unique = TRUE,
sorted = TRUE,
coerce = TRUE
)
set <- setdiff(set, pCDFlist.indices[[i]])
}
if(length(set))
stop("'pCDFlist.indices' must contain each p-value index exactly once!")
pCDFlist.counts <- sapply(pCDFlist.indices, length)
}
#----------------------------------------------------
# check and prepare p-values for processing
#----------------------------------------------------
pvec <- match.pvals(test.results, pCDFlist, pCDFlist.indices)
#----------------------------------------------------
# execute computations
#----------------------------------------------------
output <- discrete.fdr.int(
pvec = pvec,
pCDFlist = pCDFlist,
pCDFlist.indices = pCDFlist.indices,
method = ifelse(adaptive, "ADBH", "DBH"),
alpha = alpha,
method.parameter = (direction == "su"),
crit.consts = ret.crit.consts,
threshold = select.threshold,
data.name = paste(
deparse(substitute(test.results)),
"and",
deparse(substitute(pCDFlist))
)
)
return(output)
}
#' @rdname discrete.BH
#' @importFrom checkmate assert_character assert_r6 qassert
#' @export
discrete.BH.DiscreteTestResults <- function(
test.results,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE,
select.threshold = 1,
...
) {
#----------------------------------------------------
# check arguments
#----------------------------------------------------
# discrete test results object
assert_r6(
x = test.results,
classes = "DiscreteTestResults",
public = c("get_pvalues", "get_pvalue_supports", "get_support_indices")
)
# significance level
qassert(x = alpha, rules = "N1(0, 1]")
# step-up/step-down direction
assert_character(
x = direction,
n.chars = 2,
len = 1,
any.missing = FALSE
)
direction <- match.arg(tolower(direction), c("su", "sd"))
# adaptiveness
qassert(adaptive, "B1")
# compute and return critical values?
qassert(ret.crit.consts, "B1")
# selection threshold
qassert(x = select.threshold, rules = "N1(0, 1]")
#----------------------------------------------------
# execute computations
#----------------------------------------------------
output <- discrete.fdr.int(
pvec = test.results$get_pvalues(),
pCDFlist = test.results$get_pvalue_supports(unique = TRUE),
pCDFlist.indices = test.results$get_support_indices(),
method = ifelse(adaptive, "ADBH", "DBH"),
alpha = alpha,
method.parameter = (direction == "su"),
crit.consts = ret.crit.consts,
threshold = select.threshold,
data.name = deparse(substitute(test.results))
)
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.