params <-
list(month = "April May June", year = 2020L, geo_id = "NL BE")
## ----setup, include=FALSE----------------------------------------------------------------------
knitr::opts_chunk$set(
echo = FALSE,
warning = FALSE,
message = FALSE,
error = FALSE
)
## ----------------------------------------------------------------------------------------------
## Packages
library(utils)
library(tidyverse)
library(tools)
## ---- echo=TRUE--------------------------------------------------------------------------------
## Data
#read the Dataset sheet into “R”. The dataset will be called "data".
#data <- read_csv(
# "https://opendata.ecdc.europa.eu/covid19/casedistribution/csv",
# na = "")
source(
here::here(
"data-raw",
"D010",
"supporting",
"covid_ecdc_cases_geography.R"))
## ---- include=FALSE----------------------------------------------------------------------------
## Filter for `r params$month` and `r params$geo_id`
## create a conversion table to go from month name to month integer
convert_months <- tibble(
month_name = c(
"january",
"february",
"march",
"april",
"may",
"june",
"july",
"august",
"september",
"october",
"november",
"december"),
month_number = c(1:12))
m_names <- str_split(tolower(params$month), pattern = " ") %>% unlist()
month_id <- convert_months %>%
dplyr::filter(
month_name %in% m_names) %>%
dplyr::select(month_number)
id <- month_id$month_number
geo_ids <- str_split(string = params$geo_id, pattern = " ") %>% unlist()
data_filter <- data %>%
dplyr::filter(
month %in% id,
geoId %in% geo_ids
)
char_col <- map_lgl(
.x = data_filter,
.f = is.numeric
)
map(
.x = data_filter[, !char_col],
.f = unique
)
country_names <- data_filter$countriesAndTerritories %>% unique() %>%
paste(collapse = ", ")
Caps <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2),
sep="", collapse=" ")
}
cap_cases <- paste("Cases for", params$month, "and", country_names)
## ---- fig.cap= cap_cases-----------------------------------------------------------------------
data_filter <- data_filter %>%
mutate(date_time = lubridate::dmy(dateRep))
#names(data_filter)
plot_cases <- data_filter %>%
ggplot(aes(x = date_time, y = cases)) +
geom_point(aes(colour = geoId)) +
geom_line(aes(group = geoId, colour = geoId))
plot_cases
## ---- fig.cap=paste("Deaths for", params$month, "and" , country_names)-------------------------
data_filter <- data_filter %>%
mutate(date_time = lubridate::dmy(dateRep))
#names(data_filter)
plot <- data_filter %>%
ggplot(aes(x = date_time, y = deaths)) +
geom_point(aes(colour = geoId)) +
geom_line(aes(group = geoId, colour = geoId))
plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.