Description Usage Arguments Value Methods (by class) See Also Examples
Gene Set Variation Analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | gsva(expr, gset.idx.list, ...)
## S4 method for signature 'ExpressionSet,list'
gsva(expr, gset.idx.list, annotation,
method = c("gsva", "ssgsea", "zscore", "plage"), rnaseq = FALSE,
abs.ranking = FALSE, min.sz = 1, max.sz = Inf, no.bootstraps = 0,
bootstrap.percent = 0.632, parallel.sz = 0, parallel.type = "SOCK",
mx.diff = TRUE, tau = switch(method, gsva = 1, ssgsea = 0.25, NA),
kernel = TRUE, ssgsea.norm = TRUE, verbose = TRUE,
is.gset.list.up.down = FALSE)
## S4 method for signature 'ExpressionSet,GeneSetCollection'
gsva(expr, gset.idx.list,
annotation, method = c("gsva", "ssgsea", "zscore", "plage"),
rnaseq = FALSE, abs.ranking = FALSE, min.sz = 1, max.sz = Inf,
no.bootstraps = 0, bootstrap.percent = 0.632, parallel.sz = 0,
parallel.type = "SOCK", mx.diff = TRUE, tau = switch(method, gsva = 1,
ssgsea = 0.25, NA), kernel = TRUE, ssgsea.norm = TRUE, verbose = TRUE,
is.gset.list.up.down = FALSE)
## S4 method for signature 'matrix,GeneSetCollection'
gsva(expr, gset.idx.list, annotation,
method = c("gsva", "ssgsea", "zscore", "plage"), rnaseq = FALSE,
abs.ranking = FALSE, min.sz = 1, max.sz = Inf, no.bootstraps = 0,
bootstrap.percent = 0.632, parallel.sz = 0, parallel.type = "SOCK",
mx.diff = TRUE, tau = switch(method, gsva = 1, ssgsea = 0.25, NA),
kernel = TRUE, ssgsea.norm = TRUE, verbose = TRUE,
is.gset.list.up.down = FALSE)
## S4 method for signature 'matrix,list'
gsva(expr, gset.idx.list, annotation,
method = c("gsva", "ssgsea", "zscore", "plage"), rnaseq = FALSE,
abs.ranking = FALSE, min.sz = 1, max.sz = Inf, no.bootstraps = 0,
bootstrap.percent = 0.632, parallel.sz = 0, parallel.type = "SOCK",
mx.diff = TRUE, tau = switch(method, gsva = 1, ssgsea = 0.25, NA),
kernel = TRUE, ssgsea.norm = TRUE, verbose = TRUE,
is.gset.list.up.down = FALSE)
|
expr |
Gene expression data which can be given either as an |
gset.idx.list |
Gene sets provided either as a |
... |
other optional arguments. |
annotation |
In the case of calling |
method |
Method to employ in the estimation of gene-set enrichment scores per sample. By default
this is set to |
rnaseq |
Flag to inform whether the input gene expression data comes from microarray
( |
abs.ranking |
Flag to determine whether genes should be ranked according to
their sign ( |
min.sz |
Minimum size of the resulting gene sets. |
max.sz |
Maximum size of the resulting gene sets. |
no.bootstraps |
Number of bootstrap iterations to perform. |
bootstrap.percent |
.632 is the ideal percent samples bootstrapped. |
parallel.sz |
Number of processors to use when doing the calculations in parallel.
This requires to previously load either the |
parallel.type |
Type of cluster architecture when using |
mx.diff |
Offers two approaches to calculate the enrichment statistic (ES)
from the KS random walk statistic. |
tau |
Exponent defining the weight of the tail in the random walk performed by both the |
kernel |
Logical, set to |
ssgsea.norm |
Logical, set to |
verbose |
Gives information about each calculation step. Default: |
is.gset.list.up.down |
logical. Is the gene list divided into up/down sublists? Please note that it is important to name the up-regulated gene set list 'up', and the down-regulated gene set list to 'down', if this argument is used (e.g gset = list(up = up_gset, down = down_gset)) |
returns gene set enrichment scores for each sample and gene set
expr = ExpressionSet,gset.idx.list = list
: Method for ExpressionSet and list
expr = ExpressionSet,gset.idx.list = GeneSetCollection
: Method for ExpressionSet and GeneSetCollection
expr = matrix,gset.idx.list = GeneSetCollection
: Method for matrix and GeneSetCollection
expr = matrix,gset.idx.list = list
: Method for matrix and list
Hanzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14, 7. http://doi.org/10.1186/1471-2105-14-7
1 2 3 4 5 6 7 8 9 | data("Maupin")
names(maupin)
geneSet<- maupin$sig$EntrezID #Symbol ##EntrezID # both up and down genes:
up_sig<- maupin$sig[maupin$sig$upDown == "up",]
d_sig<- maupin$sig[maupin$sig$upDown == "down",]
u_geneSet<- up_sig$EntrezID #Symbol # up_sig$Symbol ## EntrezID
d_geneSet<- d_sig$EntrezID
es.dif <- gsva(maupin$data, list(up = u_geneSet, down= d_geneSet), mx.diff=1,
verbose=TRUE, abs.ranking=FALSE, is.gset.list.up.down=TRUE, parallel.sz = 1 )$es.obs
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.