#' Generalized entropy index
#'
#' Estimate the generalized entropy index, a measure of inequality
#'
#' @param formula a formula specifying the income variable
#' @param design a design object of class \code{survey.design} or class \code{svyrep.design} from the \code{survey} library.
#' @param epsilon a parameter that determines the sensivity towards inequality in the top of the distribution. Defaults to epsilon = 1.
#' @param na.rm Should cases with missing values be dropped?
#' @param deff Return the design effect (see \code{survey::svymean})
#' @param linearized Should a matrix of linearized variables be returned
#' @param influence Should a matrix of (weighted) influence functions be returned? (for compatibility with \code{\link[survey]{svyby}})
#' @param return.replicates Return the replicate estimates?
#' @param ... future expansion
#'
#' @details you must run the \code{convey_prep} function on your survey design object immediately after creating it with the \code{svydesign} or \code{svrepdesign} function.
#'
#' This measure only allows for strictly positive variables.
#'
#' @return Object of class "\code{cvystat}", which are vectors with a "\code{var}" attribute giving the variance and a "\code{statistic}" attribute giving the name of the statistic.
#'
#' @author Guilherme Jacob, Djalma Pessoa and Anthony Damico
#'
#' @seealso \code{\link{svyatk}}
#'
#' @references Matti Langel (2012). Measuring inequality in finite population sampling.
#' PhD thesis: Universite de Neuchatel,
#' URL \url{https://doc.rero.ch/record/29204/files/00002252.pdf}.
#'
#' Martin Biewen and Stephen Jenkins (2002). Estimation of Generalized Entropy
#' and Atkinson Inequality Indices from Complex Survey Data. \emph{DIW Discussion Papers},
#' No.345,
#' URL \url{https://www.diw.de/documents/publikationen/73/diw_01.c.40394.de/dp345.pdf}.
#' @keywords survey
#'
#' @examples
#' library(survey)
#' library(laeken)
#' data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
#'
#' # linearized design
#' des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
#' des_eusilc <- convey_prep(des_eusilc)
#'
#' # replicate-weighted design
#' des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
#' des_eusilc_rep <- convey_prep(des_eusilc_rep)
#'
#' # linearized design
#' svygei( ~eqincome , subset(des_eusilc, eqincome > 0), epsilon = 0 )
#' svygei( ~eqincome , subset(des_eusilc, eqincome > 0), epsilon = .5 )
#' svygei( ~eqincome , subset(des_eusilc, eqincome > 0), epsilon = 1 )
#' svygei( ~eqincome , subset(des_eusilc, eqincome > 0), epsilon = 2 )
#'
#' # replicate-weighted design
#' svygei( ~eqincome , subset(des_eusilc_rep, eqincome > 0), epsilon = 0 )
#' svygei( ~eqincome , subset(des_eusilc_rep, eqincome > 0), epsilon = .5 )
#' svygei( ~eqincome , subset(des_eusilc_rep, eqincome > 0), epsilon = 1 )
#' svygei( ~eqincome , subset(des_eusilc_rep, eqincome > 0), epsilon = 2 )
#'
#' \dontrun{
#'
#' # linearized design using a variable with missings
#' svygei( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 0 )
#' svygei( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 0, na.rm = TRUE )
#' svygei( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n) ), epsilon = .5 )
#' svygei( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n) ), epsilon = .5, na.rm = TRUE )
#' svygei( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 1 )
#' svygei( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 1, na.rm = TRUE )
#' svygei( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 2 )
#' svygei( ~py010n , subset(des_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 2, na.rm = TRUE )
#'
#' # replicate-weighted design using a variable with missings
#' svygei( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n) ), epsilon = 0 )
#' svygei( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n) ), epsilon = 0, na.rm = TRUE )
#' svygei( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n) ), epsilon = .5 )
#' svygei( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n) ), epsilon = .5, na.rm = TRUE )
#' svygei( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n) ), epsilon = 1 )
#' svygei( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n) ), epsilon = 1, na.rm = TRUE )
#' svygei( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n) ), epsilon = 2 )
#' svygei( ~py010n , subset(des_eusilc_rep, py010n > 0 | is.na(py010n) ), epsilon = 2, na.rm = TRUE )
#'
#' # database-backed design
#' library(RSQLite)
#' library(DBI)
#' dbfile <- tempfile()
#' conn <- dbConnect( RSQLite::SQLite() , dbfile )
#' dbWriteTable( conn , 'eusilc' , eusilc )
#'
#' dbd_eusilc <-
#' svydesign(
#' ids = ~rb030 ,
#' strata = ~db040 ,
#' weights = ~rb050 ,
#' data="eusilc",
#' dbname=dbfile,
#' dbtype="SQLite"
#' )
#'
#' dbd_eusilc <- convey_prep( dbd_eusilc )
#'
#' # database-backed linearized design
#' svygei( ~eqincome , subset(dbd_eusilc, eqincome > 0), epsilon = 0 )
#' svygei( ~eqincome , dbd_eusilc, epsilon = .5 )
#' svygei( ~eqincome , subset(dbd_eusilc, eqincome > 0), epsilon = 1 )
#' svygei( ~eqincome , dbd_eusilc, epsilon = 2 )
#'
#' # database-backed linearized design using a variable with missings
#' svygei( ~py010n , subset(dbd_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 0 )
#' svygei( ~py010n , subset(dbd_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 0, na.rm = TRUE )
#' svygei( ~py010n , dbd_eusilc, epsilon = .5 )
#' svygei( ~py010n , dbd_eusilc, epsilon = .5, na.rm = TRUE )
#' svygei( ~py010n , subset(dbd_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 1 )
#' svygei( ~py010n , subset(dbd_eusilc, py010n > 0 | is.na(py010n) ), epsilon = 1, na.rm = TRUE )
#' svygei( ~py010n , dbd_eusilc, epsilon = 2 )
#' svygei( ~py010n , dbd_eusilc, epsilon = 2, na.rm = TRUE )
#'
#' dbRemoveTable( conn , 'eusilc' )
#'
#' dbDisconnect( conn , shutdown = TRUE )
#'
#' }
#'
#' @export
svygei <-
function(formula, design, ...) {
if (length(attr(terms.formula(formula) , "term.labels")) > 1)
stop(
"convey package functions currently only support one variable in the `formula=` argument"
)
#if( 'epsilon' %in% names( list(...) ) && list(...)[["epsilon"]] < 0 ) stop( "epsilon= cannot be negative." )
UseMethod("svygei", design)
}
#' @rdname svygei
#' @export
svygei.survey.design <-
function (formula,
design,
epsilon = 1,
na.rm = FALSE,
deff = FALSE ,
linearized = FALSE ,
influence = FALSE ,
...) {
# collect income data
incvar <-
model.frame(formula, design$variables, na.action = na.pass)[[1]]
# treat missing values
if (na.rm) {
nas <- is.na(incvar)
design$prob <- ifelse(nas , Inf , design$prob)
}
# collect weights
w <- 1 / design$prob
# check for strictly positive incomes
if (any(incvar[w != 0] <= 0 , na.rm = TRUE))
stop(
"The GEI indices are defined for strictly positive variables only.\nNegative and zero values not allowed."
)
# compute value
estimate <- CalcGEI(incvar, w, epsilon)
# compute linearized functions
lin <- CalcGEI_IF(incvar, w, epsilon)
# compute variance
variance <-
survey::svyrecvar(
lin / design$prob,
design$cluster,
design$strata,
design$fpc,
postStrata = design$postStrata
)
variance[which(is.nan(variance))] <- NA
colnames(variance) <-
rownames(variance) <-
strsplit(as.character(formula)[[2]] , ' \\+ ')[[1]]
# compute deff
if (is.character(deff) || deff) {
nobs <- sum(weights(design) != 0)
npop <- sum(weights(design))
if (deff == "replace")
vsrs <- survey::svyvar(lin , design, na.rm = na.rm) * npop ^ 2 / nobs
else
vsrs <-
survey::svyvar(lin , design , na.rm = na.rm) * npop ^ 2 * (npop - nobs) /
(npop * nobs)
deff.estimate <- variance / vsrs
}
# # keep necessary linearized functions
# lin <- lin[ 1/design$prob > 0 ]
# coerce to matrix
lin <-
matrix(lin ,
nrow = length(lin) ,
dimnames = list( rownames( design$variables ) , strsplit(as.character(formula)[[2]] , ' \\+ ')[[1]]))
# build result object
rval <- estimate
names(rval) <-
strsplit(as.character(formula)[[2]] , ' \\+ ')[[1]]
class(rval) <- c("cvystat" , "svystat")
attr(rval, "var") <- variance
attr(rval, "statistic") <- "gei"
attr(rval, "epsilon") <- epsilon
if (linearized)
attr(rval, "linearized") <- lin
if (influence)
attr(rval , "influence") <- sweep(lin , 1 , design$prob , "/")
if (linearized |
influence)
attr(rval , "index") <- as.numeric(rownames(lin))
if (is.character(deff) ||
deff)
attr(rval , "deff") <- deff.estimate
rval
}
#' @rdname svygei
#' @export
svygei.svyrep.design <-
function(formula ,
design ,
epsilon = 1 ,
na.rm = FALSE ,
deff = FALSE ,
linearized = FALSE ,
return.replicates = FALSE ,
...) {
# collect income variable
incvar <-
model.frame(formula, design$variables, na.action = na.pass)[[1]]
# treat missings
if (na.rm) {
nas <- is.na(incvar)
design <- design[!nas, ]
incvar <- incvar[!nas]
}
# collect sampling weights
ws <- weights(design, "sampling")
# check for strictly positive incomes
if (any(incvar[ws != 0] <= 0, na.rm = TRUE))
stop(
"The GEI indices are defined for strictly positive variables only.\nNegative and zero values not allowed."
)
# compute point estimate
estimate <- CalcGEI(incvar, ws, epsilon)
# collect analysis weights
ww <- weights(design, "analysis")
# compute replicates
qq <-
apply(ww, 2 , function(wi)
CalcGEI(incvar , wi , epsilon = epsilon))
# compute variance
if (any(is.na(qq)))
variance <- as.matrix(NA)
else {
variance <-
survey::svrVar(qq ,
design$scale ,
design$rscales ,
mse = design$mse ,
coef = estimate)
this.mean <- attr(variance , "means")
variance <- as.matrix(variance)
attr(variance , "means") <- this.mean
}
colnames(variance) <-
rownames(variance) <-
strsplit(as.character(formula)[[2]] , ' \\+ ')[[1]]
# compute deff
if (is.character(deff) || deff || linearized) {
# compute linearized function
lin <- CalcGEI_IF(incvar , ws , epsilon)
# compute deff
nobs <- sum(design$pweights > 0)
npop <- sum(design$pweights)
vsrs <-
unclass(
survey::svyvar(
lin ,
design,
na.rm = na.rm,
return.replicates = FALSE,
estimate.only = TRUE
)
) * npop ^ 2 / nobs
if (deff != "replace")
vsrs <- vsrs * (npop - nobs) / npop
deff.estimate <- variance / vsrs
# filter observation
names(lin) <- rownames(design$variables)
# coerce to matrix
lin <-
matrix(lin ,
nrow = length(lin) ,
dimnames = list( rownames( design$variables ) , strsplit(as.character(formula)[[2]] , ' \\+ ')[[1]]))
}
# build result object
rval <- estimate
names(rval) <-
strsplit(as.character(formula)[[2]] , ' \\+ ')[[1]]
class(rval) <- c("cvystat" , "svrepstat")
attr(rval, "var") <- variance
attr(rval, "statistic") <- "gei"
attr(rval, "epsilon") <- epsilon
if (linearized)
attr(rval , "linearized") <- lin
if (linearized)
attr(rval , "index") <- as.numeric(rownames(lin))
# keep replicates
if (return.replicates) {
attr(qq , "scale") <- design$scale
attr(qq , "rscales") <- design$rscales
attr(qq , "mse") <- design$mse
rval <- list(mean = rval , replicates = qq)
class(rval) <- c("cvystat" , "svrepstat")
}
# add design effect estimate
if (is.character(deff) ||
deff)
attr(rval , "deff") <- deff.estimate
# return object
rval
}
#' @rdname svygei
#' @export
svygei.DBIsvydesign <-
function (formula, design, ...) {
design$variables <-
getvars(
formula,
design$db$connection,
design$db$tablename,
updates = design$updates,
subset = design$subset
)
NextMethod("svygei", design)
}
# function for point estimates
CalcGEI <-
function(y , w, epsilon) {
# filter observations
w <- ifelse( y > 0 & w != 0 , w , 0 )
y <- ifelse( w!=0 , y , 1 )
# intermediate stats
N <- sum( w )
Ytot <- sum( w * y )
Ybar <- Ytot / N
# branch on epsilon
uscore <- y / Ybar
if (epsilon == 0) {
gscore <- -log(uscore)
} else if (epsilon == 1) {
gscore <- uscore * log(uscore)
} else {
gscore <- (uscore ^ epsilon - 1) / (epsilon ^ 2 - epsilon)
}
gei <- sum( w * gscore ) / N
# return estimate
return(gei)
}
# function for linearized functions
CalcGEI_IF <-
function(y , w , epsilon) {
# filter observations
w <- ifelse( y > 0 & w != 0 , w , 0 )
y <- ifelse( w!=0 , y , 1 )
# compute intermediate
N <- sum( w )
Ytot <- sum( w * y )
Ybar <- Ytot / N
gei <- CalcGEI( y , w , epsilon )
# income-inequality score
uscore <- y / Ybar
if (epsilon == 0)
yscore <- -log(uscore)
else if (epsilon == 1)
yscore <- uscore * log(uscore)
else
yscore <- (uscore ^ epsilon - 1) / (epsilon ^ 2 - epsilon)
# first term
l1 <- (1 / N) * (yscore - gei)
# second term
if (epsilon == 0)
partial.Ybar <- 1 / Ybar
else if (epsilon == 1)
partial.Ybar <- -(1 / Ybar) * (gei + 1)
else
partial.Ybar <-
-(1 / (Ybar * (epsilon - 1))) * ((epsilon ^ 2 - epsilon) * gei + 1)
lin.Ybar <- (y - Ybar) / N
l2 <- partial.Ybar * lin.Ybar
# linearized
ll <- l1 + l2
ll <- ifelse( w != 0 , ll , 0 )
ll
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.