BOA <- function(y, experts, awake = NULL, loss.type = "square", loss.gradient = TRUE,
w0 = NULL, training = NULL, quiet = FALSE) {
experts <- as.matrix(experts)
N <- ncol(experts)
T <- nrow(experts)
# Uniform initial weight vector if unspecified
if (is.null(w0)) {
w0 <- rep(1, N)
}
awake <- as.matrix(awake)
idx.na <- which(is.na(experts))
awake[idx.na] <- 0
experts[idx.na] <- 0
R <- rep(0, N)
R.reg <- rep(0, N)
# /!\ caution with *Copy on Write* before using RCPP
w <- w0[]
weights <- matrix(0, ncol = N, nrow = T)
prediction <- rep(0, T)
eta_inv2 <- matrix(0, ncol = N, nrow = T + 1)
r.reg <- numeric(N)
if (!is.null(training)) {
w0 <- training$w0
R <- training$R
R.reg <- training$R.reg
eta_inv2[1, ] <- training$eta_inv2
}
idx_nonzero <- eta_inv2[1, ] > 0
empty <- sum(idx_nonzero) == 0
if (! quiet) steps <- init_progress(T)
for (t in 1:T) {
if (! quiet) update_progress(t, steps)
idx <- awake[t,] > 0
w <- w0
if (!empty) {
R.aux <- -log(eta_inv2[t,idx_nonzero])/2 + log(w0[idx_nonzero]) + R.reg[idx_nonzero] / sqrt(eta_inv2[t, idx_nonzero])
R.max <- max(R.aux)
w[idx & idx_nonzero] <- sum(w0[idx & idx_nonzero]) * exp(R.aux - R.max) / sum(exp(R.aux - R.max) )
}
p <- awake[t, ] * w /sum(awake[t, ] * w)
pred <- experts[t, ] %*% p
weights[t, ] <- p
prediction[t] <- pred
lpred <- loss(pred, y[t], pred, loss.type = loss.type, loss.gradient = loss.gradient)
lexp <- loss(experts[t, ], y[t], pred, loss.type = loss.type, loss.gradient = loss.gradient)
# Instantaneous regret
r <- awake[t, ] * c(c(lpred) - lexp)
# Update the learning rates
eta_inv2[t + 1, ] <- eta_inv2[t, ] + 2.2 * r^2
idx_nonzero <- eta_inv2[t+1, ] > 0
if (empty) {
empty <- sum(idx_nonzero) == 0
}
# Update the regret and the regularized regret used by BOA
if (!empty) {
r.reg[idx_nonzero] <- r[idx_nonzero] - r[idx_nonzero]^2 /sqrt(eta_inv2[t+1, idx_nonzero])
}
R <- R + r
R.reg <- R.reg + r.reg
}
if (! quiet) end_progress()
w <- w0
if (!empty) {
R.aux <- -log(eta_inv2[T+1,idx_nonzero])/2 + log(w0[idx_nonzero]) + R.reg[idx_nonzero] / sqrt(eta_inv2[T+1, idx_nonzero])
R.max <- max(R.aux)
w[idx_nonzero] <- sum(w0[idx_nonzero]) * exp(R.aux - R.max) / sum(exp(R.aux - R.max) )
}
object <- list(model = "BOA", loss.type = loss.type, loss.gradient = loss.gradient,
coefficients = w/sum(w))
object$parameters <- list(eta_inv2 = eta_inv2[1:T, ])
object$weights <- weights
object$prediction <- prediction
object$training <- list(eta_inv2 = eta_inv2[T + 1, ], R = R, w0 = w0, R.reg = R.reg)
class(object) <- "mixture"
return(object)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.