# # test install from my dev repo
# detach(packages:ecocomDP)
# remotes::install_github("sokole/ecocomDP@development")
# library(ecocomDP)
library(tidyverse)
###############################################
###############################################
# BIRD -- event_id maps to NEON eventID
# NOTE: taxa need to be added within event_id to get abundances per event
my_result_read_data <- read_data(
id = "neon.ecocomdp.10003.001.001",
site= c("NIWO","DSNY"),
startdate = "2016-01",
enddate = "2017-11",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum())
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
my_result_read_data$tables %>% base::list2env(.GlobalEnv)
observation$observation_id %>% setdiff(observation_ancillary$observation_id)
observation_ancillary$observation_id %>% setdiff(observation$observation_id)
###############################################
###############################################
#BEETLE -- event_id maps to NEON sampleID, boutID is in ancillary table
# no expected dup taxa within event_id
my_result_read_data <- read_data(
id = "neon.ecocomdp.10022.001.001",
site = c('ABBY','BARR'),
startdate = "2019-06",
# enddate = "2019-09",
enddate = "2021-02",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
# seems to be true dups in the sorting table? -- dups resolved as of 7/18/2023
###############################################
###############################################
# HERPS -- event_id maps to NEON sampleID, boutID is in ancillary table
# no dup taxa within event_id
# my_result_read_data <- read_data(
# id = "neon.ecocomdp.10022.001.002",
# site= c("NIWO","DSNY"),
# startdate = "2016-01",
# enddate = "2019-11",
# token = Sys.getenv("NEON_TOKEN"),
# check.size = FALSE)
# Error in UseMethod("filter") :
# no applicable method for 'filter' applied to an object of class "NULL"
# In addition: Warning message:
# In validate_site(fun.args$site, fun.args$id) :
# Sites not available in neon.ecocomdp.10022.001.002: NIWO
# my_result_read_data$validation_issues
# my_result_read_data$metadata$data_package_info
#
# tab_flat <- my_result_read_data$tables %>%
# ecocomDP::flatten_data() %>%
# as.data.frame()
#
# View(tab_flat)
# plot_taxa_sample_time(my_result_read_data$tables$observation, my_result_read_data$id)
#
# tab_flat %>% group_by(event_id) %>%
# summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
# dplyr::filter(no_dup_taxa > 0)
###############################################
###############################################
# MOSQUITO -- event_id maps to NEON sampleID, neon_event_id maps to eventID
# no dup taxa expected within event_id, but some do exist.
my_result_read_data <- read_data(
id = "neon.ecocomdp.10043.001.001",
site= c("NIWO","DSNY"),
startdate = "2016-01",
enddate = "2017-11",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
# an issue with a handful of duplicates -- fixed 7/19/2023 ERS
###############################################
###############################################
# PLANTS
# event_id = paste0(location_id,"_",subplot_id,"_",year,"-",boutNumber)
# needs post-processing to separate/aggregate data properly for each spatial scale
my_result_read_data <- read_data(
id = "neon.ecocomdp.10058.001.001",
site= c("NIWO","DSNY"),
startdate = "2016-01",
enddate = "2017-11",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
# only look at percent cover values
tab_flat$value %>% na.omit() %>% hist()
tab_flat$value %>% na.omit() %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
###############################################
###############################################
# SMALL_MAMMAL - event_id maps to plot/grid by year/month and should not have dup taxa
# event_id = paste(location_id, year, month, sep = "_"))
my_result_read_data <- read_data(
id = "neon.ecocomdp.10072.001.001",
site= c("NIWO","DSNY"),
startdate = "2016-01",
enddate = "2017-11",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
###############################################
###############################################
# TICK_PATHOGEN
# event_id = namedLocation/plotID by collectDate
# event_id should not have dup taxa
# note -- was calculating postivitiy rate incorrectly, should be fixed now.
my_result_read_data <- read_data(
id = "neon.ecocomdp.10092.001.001",
site = c("ORNL","OSBS"),
startdate = "2016-01",
enddate = "2017-11",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
###############################################
###############################################
# # TICK -- event_id maps to neon sampleID
# # also record neon_event_id -- which has multiple samplesIDs
# # should be no dup in taxa by lifestage combos within a sample/event_id
# # coungs should be summed among lifestages within a sample
#
my_result_read_data <- read_data(
id = "neon.ecocomdp.10093.001.001",
site = c("NIWO","DSNY", "BART"),
startdate = "2016-01",
enddate = "2017-11",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat %>% group_by(event_id, LifeStage) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
# dup counts per taxon per sampleID because we keep life stage info -
# Larva, Nymph, and Adult
###############################################
###############################################
# FISH
# event_id = NEON eventID
# should be no dup taxa within event_id
my_result_read_data <- read_data(
id = "neon.ecocomdp.20107.001.001",
site = c(c('ARIK','LECO')),
startdate = "2016-01",
enddate = "2018-11",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
# NOTE: dups resolved as of 7/19/2023
###############################################
###############################################
# MACROINVERTEBRATE
# event_id = sampleID
# neon_event_id = NEON's eventID
# should not be dup taxa within event_id/sampleID -- different size classes and life states added together in a sampleID -- this is different than what was sent to neonDivData previously
my_result_read_data <- read_data(
id = "neon.ecocomdp.20120.001.001",
site= c('COMO','LECO','SUGG'),
startdate = "2017-06",
enddate = "2021-03",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
###############################################
###############################################
#ALGAE -- event_id = neon_sample_id
# neon_event_id == NEON eventID, which has multiple samples
# no dup taxa should occur within an event_id/neon_sample_id -- but have been seeing some
# shoudl we add dup taxa densities together? -- updated to sum duplicates
# takes a long time to run, look into taxon tab creation and ancillary tab creation
# -- fixed this - was using rowwise where not necessary
my_result_read_data <- read_data(
id = "neon.ecocomdp.20166.001.001",
site = c('COMO','SUGG'),
startdate = "2017-06",
enddate = "2018-09",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
###############################################
###############################################
# ZOOPLANKTON (MACROINVERTEBRATES)
# event_id = neon_sample_id
# neon_event_id = NEON's eventID, multiple samples map to a NEON event ID
my_result_read_data <- read_data(
id = "neon.ecocomdp.20219.001.001",
site = c("BARC","SUGG"),
startdate = "2016-01",
enddate = "2017-11",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
my_result_read_data$validation_issues
my_result_read_data$metadata$data_package_info
tab_flat <- my_result_read_data$tables %>%
ecocomDP::flatten_data() %>%
as.data.frame()
# View(tab_flat)
plot_sample_space_time(my_result_read_data)
tab_flat$value %>% hist()
tab_flat$value %>% log10() %>% hist()
tab_flat %>% group_by(event_id) %>%
summarize(no_dup_taxa = taxon_id %>% duplicated() %>% sum()) %>%
dplyr::filter(no_dup_taxa > 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.