rm(list=ls())
devtools::load_all()
# # algae
# my_dataset <- read_data(
# id = "neon.ecocomdp.20166.001.001",
# site = c('COMO','SUGG'),
# startdate = "2017-06",
# enddate = "2019-09",
# token = Sys.getenv("NEON_TOKEN"),
# check.size = FALSE)
# macroinverts
my_dataset <- read_data(
id = "neon.ecocomdp.20120.001.001",
site= c('COMO','LECO','SUGG'),
startdate = "2017-06",
enddate = "2019-09",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
# detecting data types
ecocomDP:::detect_data_type(ants_L1)
ecocomDP:::detect_data_type(ants_L1)
ecocomDP:::detect_data_type(ants_L1$tables)
ecocomDP:::detect_data_type(ants_L1$tables$observation)
ecocomDP:::detect_data_type(list(a = ants_L1, b = ants_L1))
ecocomDP:::detect_data_type(list(a = ants_L1, b = ants_L1))
ecocomDP:::detect_data_type(my_dataset)
ecocomDP:::detect_data_type(my_dataset)
ecocomDP:::detect_data_type(my_dataset$tables)
ecocomDP:::detect_data_type(my_dataset$tables$observation)
ecocomDP:::detect_data_type(list(a = my_dataset, b = my_dataset))
ecocomDP:::detect_data_type(list(a = my_dataset, b = my_dataset))
# error out with informative message
ecocomDP:::detect_data_type(ants_L1$metadata)
ecocomDP:::detect_data_type(my_dataset$metadata)
ecocomDP:::detect_data_type(list(a="a"))
# this detects "list_of_datasets" -- might want to improve logic in the future?
ecocomDP:::detect_data_type(list(a = ants_L1, b = ants_L1))
# test new flatten with autodetect
flat <- flatten_data(ants_L1)
flat <- flatten_data(ants_L1)
flat <- flatten_data(ants_L1$tables)
flat <- flatten_data(my_dataset)
flat <- flatten_data(my_dataset)
flat <- flatten_data(my_dataset$tables)
# should error with message
flat <- flatten_data(ants_L1$validation_issues)
flat <- flatten_data(my_dataset$validation_issues)
#########################################################
###########################################################
# accum by site
plot_taxa_accum_sites(my_dataset)
plot_taxa_accum_sites(
data = my_dataset %>% flatten_data())
###########################################################
# plot ecocomDP dataset
plot_taxa_accum_sites(ants_L1)
# plot flattened ecocomDP data
plot_taxa_accum_sites(flatten_data(ants_L1))
# plot an ecocomDP observation table
plot_taxa_accum_sites(
data = ants_L1$tables$observation)
# tidy syntax
ants_L1 %>% plot_taxa_accum_sites()
# tidy syntax, filter data by date
ants_L1 %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_accum_sites()
###########################################################
###########################################################
###########################################################
###########################################################
# accum by time
# looks weird for SUGG for macroinvert dataset using both methods
plot_taxa_accum_time(
data = my_dataset)
plot_taxa_accum_time(
data = my_dataset$tables$observation,
id = my_dataset$id)
plot_taxa_accum_time(
data = my_dataset %>% flatten_data())
###########################################################
# plot ecocomDP formatted dataset
plot_taxa_accum_time(
data = ants_L1)
# plot flattened ecocomDP dataset
plot_taxa_accum_time(
data = flatten_data(ants_L1))
# plot ecocomDP observation table
plot_taxa_accum_time(
data = ants_L1$tables$observation)
# tidy syntax, filter data by date
ants_L1 %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_accum_time()
###########################################################
###########################################################
###########################################################
###########################################################
# richness by time
# this is also messed up for macroinverts -- COMO is weird
# RENAME from "plot_taxa_diversity" to "plot_richness_time"
plot_taxa_diversity(
data = my_dataset$tables$observation,
id = my_dataset$id)
plot_taxa_diversity(
data = my_dataset)
plot_taxa_diversity(
data = my_dataset,
time_window_size = "year")
plot_taxa_diversity(
data = my_dataset,
time_window_size = "month")
plot_taxa_diversity(
data = my_dataset,
time_window_size = "day")
plot_taxa_diversity(
data = my_dataset %>% flatten_data(),
time_window_size = "year")
plot_taxa_diversity(
data = my_dataset %>% flatten_data(),
time_window_size = "month")
my_dataset %>% plot_taxa_diversity()
my_dataset %>% flatten_data() %>%
dplyr::filter(grepl("^SUGG",location_id)) %>%
plot_taxa_diversity()
my_dataset %>% flatten_data() %>%
dplyr::filter(grepl("^SUGG",location_id)) %>%
plot_taxa_diversity(time_window_size = "day")
my_dataset %>% flatten_data() %>%
dplyr::filter(grepl("^SUGG",location_id)) %>%
plot_taxa_diversity(time_window_size = "month")
my_dataset %>% flatten_data() %>%
dplyr::filter(grepl("^SUGG",location_id)) %>%
plot_taxa_diversity(time_window_size = "year")
###########################################################
# plot richness through time for ecocomDP formatted dataset by
# observation date
plot_taxa_diversity(ants_L1)
# plot richness through time for ecocomDP formatted dataset by
# aggregating observations within a year
plot_taxa_diversity(
data = ants_L1,
time_window_size = "year")
# plot richness through time for ecocomDP observation table
plot_taxa_diversity(ants_L1$tables$observation)
# plot richness through time for flattened ecocomDP dataset
plot_taxa_diversity(flatten_data(ants_L1))
# Using Tidy syntax:
# plot ecocomDP formatted dataset richness through time by
# observation date
ants_L1 %>% plot_taxa_diversity()
ants_L1 %>% plot_taxa_diversity(time_window_size = "day")
# plot ecocomDP formatted dataset richness through time
# aggregating observations within a month
ants_L1 %>% plot_taxa_diversity(time_window_size = "month")
# plot ecocomDP formatted dataset richness through time
# aggregating observations within a year
ants_L1 %>% plot_taxa_diversity(time_window_size = "year")
# tidy syntax, filter data by date
ants_L1 %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2007-01-01") %>%
plot_taxa_diversity(
time_window_size = "year")
###########################################################
###########################################################
###########################################################
###########################################################
# sample coverage by site and time
# RENAME
plot_sample_space_time(
data = my_dataset$tables$observation,
id = my_dataset$id)
plot_sample_space_time(
data = my_dataset)
plot_sample_space_time(
data = my_dataset %>% flatten_data())
plot_sample_space_time(
data = my_dataset$tables$observation,
id = names(my_dataset))
plot_sample_space_time(
data = ants_L1)
my_dataset %>%
plot_sample_space_time()
# filter location id
my_dataset %>%
flatten_data() %>%
dplyr::filter(grepl("SUGG",location_id)) %>%
plot_sample_space_time()
###########################################################
# plot ecocomDP formatted dataset
plot_sample_space_time(ants_L1)
# plot flattened ecocomDP dataset
plot_sample_space_time(flatten_data(ants_L1))
# plot ecocomDP observation table
plot_sample_space_time(ants_L1$tables$observation)
# tidy syntax, filter data by date
ants_L1 %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2003-07-01") %>%
plot_sample_space_time()
# tidy syntax, filter data by site ID
ants_L1 %>%
flatten_data() %>%
dplyr::filter(
as.numeric(location_id) > 4) %>%
plot_sample_space_time()
###########################################################
###########################################################
###########################################################
###########################################################
# plot shared taxa across sites -- this seems to work fine
my_dataset <- read_data(
id = "neon.ecocomdp.20120.001.001",
site= c('COMO','LECO'),
startdate = "2017-06",
enddate = "2019-09",
token = Sys.getenv("NEON_TOKEN"),
check.size = FALSE)
plot_taxa_shared_sites(
data = my_dataset$tables$observation,
id = my_dataset$id)
plot_taxa_shared_sites(
data = my_dataset)
plot_taxa_shared_sites(
data = ants_L1$tables$observation,
id = ants_L1$id)
plot_taxa_shared_sites(
data = ants_L1)
neon_data <- ecocomDP::read_data(
id = "neon.ecocomdp.20120.001.001",
site = c('ARIK','CARI','MAYF'))
plot_taxa_shared_sites(neon_data)
###########################################################
# plot ecocomDP formatted dataset
plot_taxa_shared_sites(ants_L1)
# plot flattened ecocomDP dataset
plot_taxa_shared_sites(flatten_data(ants_L1))
# plot ecocomDP observation table
plot_taxa_shared_sites(ants_L1$tables$observation)
# tidy syntax, filter data by date
ants_L1 %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_shared_sites()
# tidy syntax, filter data by site ID
ants_L1 %>%
flatten_data() %>%
dplyr::filter(
as.numeric(location_id) > 4) %>%
plot_taxa_shared_sites()
###########################################################
###########################################################
###########################################################
# plot rank frequencies
# this is in taxon table... should we make an option to plot frequencies in the actual data?
plot_taxa_rank(
data = my_dataset)
plot_taxa_rank(
data = my_dataset,
facet_var = "location_id") #e.g., "location_id", "datetime" must be a column name in observation or taxon table
plot_taxa_rank(
data = my_dataset,
facet_var = "datetime") #e.g., "location_id", "datetime" must be a column name in observation or taxon table
plot_taxa_rank(
data = ants_L1,
facet_var = "datetime")
###########################################################
# plot ecocomDP formatted dataset
plot_taxa_rank(ants_L1)
# download and plot NEON macroinvertebrate data
my_dataset <- read_data(
id = "neon.ecocomdp.20120.001.001",
site= c('COMO','LECO'),
startdate = "2017-06",
enddate = "2019-09",
check.size = FALSE)
plot_taxa_rank(my_dataset)
# facet by location
plot_taxa_rank(
data = my_dataset,
facet_var = "location_id")
# plot flattened ecocomDP dataset
plot_taxa_rank(
data = flatten_data(my_dataset),
facet_var = "location_id")
# tidy syntax, filter data by date
my_dataset %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_rank()
# tidy syntax, filter data by site ID
my_dataset %>%
flatten_data() %>%
dplyr::filter(
grepl("COMO",location_id)) %>%
plot_taxa_rank()
###########################################################
###########################################################
###########################################################
# Plot stacked taxa by site
plot_taxa_occur_freq(
data = my_dataset,
facet_var = "location_id",
color = "location_id",
min_occurrence = 5)
plot_taxa_occur_freq(
data = my_dataset,
facet_var = "location_id",
min_occurrence = 30)
# different ways to make the same plot
plot_taxa_occur_freq(
data = my_dataset)
plot_taxa_occur_freq(
data = my_dataset %>% flatten_data())
plot_taxa_occur_freq(
data = my_dataset$tables %>% flatten_tables())
###########################################################
# plot ecocomDP formatted dataset
plot_taxa_occur_freq(ants_L1)
# plot flattened ecocomDP dataset
plot_taxa_occur_freq(flatten_data(ants_L1))
# facet by location color by taxon_rank
plot_taxa_occur_freq(
data = ants_L1,
facet_var = "location_id",
color_var = "taxon_rank")
# color by location, only include taxa with > 10 occurrences
plot_taxa_occur_freq(
data = ants_L1,
facet_var = "location_id",
color_var = "location_id",
min_occurrence = 5)
# tidy syntax, filter data by date
ants_L1 %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_occur_freq()
###########################################################
###########################################################
###########################################################
###########################################################
# boxplots
# plot ecocomDP formatted dataset
plot_taxa_abund(my_dataset)
# plot flattened ecocomDP dataset, log(x+1) transform abundances
plot_taxa_abund(
data = flatten_data(my_dataset),
trans = "log1p")
# facet by location color by taxon_rank, log 10 transformed
plot_taxa_abund(
data = my_dataset,
facet_var = "location_id",
color_var = "taxon_rank",
trans = "log10")
# facet by location, only plot taxa of rank = "species"
plot_taxa_abund(
data = my_dataset,
facet_var = "location_id",
min_relative_abundance = 0.01,
trans = "log1p")
# color by location, only include taxa with > 10 occurrences
plot_taxa_abund(
data = my_dataset,
color_var = "location_id",
trans = "log10")
# tidy syntax, filter data by date
my_dataset %>%
flatten_data() %>%
dplyr::filter(
!grepl("^SUGG", location_id)) %>%
plot_taxa_abund(
trans = "log1p",
min_relative_abundance = 0.005,
facet_var = "location_id")
###########################################################
# Read a dataset of interest
dataset <- ants_L1
# plot ecocomDP formatted dataset
plot_taxa_abund(dataset)
# plot flattened ecocomDP dataset, log(x+1) transform abundances
plot_taxa_abund(
data = flatten_data(dataset),
trans = "log1p")
# facet by location color by taxon_rank, log 10 transformed
plot_taxa_abund(
data = dataset,
facet_var = "location_id",
color_var = "taxon_rank",
trans = "log10")
# facet by location, minimum rel. abund = 0.05
plot_taxa_abund(
data = dataset,
facet_var = "location_id",
min_relative_abundance = 0.05,
trans = "log1p")
# color by location, log 10 transform
plot_taxa_abund(
data = dataset,
color_var = "location_id",
trans = "log10")
# tidy syntax, filter data by date
dataset %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_abund(
trans = "log1p",
min_relative_abundance = 0.01)
###########################################################
###########################################################
# plot map of sites
plot_sites(ants_L1)
plot_sites(flatten_data(ants_L1))
# download and plot NEON macroinvertebrate data
my_dataset <- read_data(
id = "neon.ecocomdp.20120.001.001",
site= c('COMO','LECO'),
startdate = "2017-06",
enddate = "2019-09",
check.size = FALSE)
plot_sites(my_dataset)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.