####################################################
# Initial Value : Tree.Struct, Alpha.Keep, C.Keep<-NULL
# id,rep1,rep<-1
# rep2<-2
####################################################
PP.Tree.old <- function(PPmethod, i.class, i.data, weight=TRUE, r=NULL,
lambda=NULL,cooling=0.999,temp=1,energy=0.01, ...) {
i.data <- as.matrix(i.data);
Find.proj <- function(i.class, i.data, PPmethod, r, lambda, ...) {
n <- nrow(i.data)
p <- ncol(i.data)
g <- table(i.class)
g.name <- as.numeric(names(g))
G <- length(g)
a <- PP.optimize.anneal(PPmethod, 1, i.data, i.class, std=TRUE,
cooling,temp, energy, r, lambda)
proj.data<-as.matrix(i.data) %*% a$proj.best
sign <- sign(a$proj.best[abs(a$proj.best) == max(abs(a$proj.best))])
index <- (1:p) * (abs(a$proj.best) == max(abs(a$proj.best)))
index <- index[index > 0]
if (G == 2) {
class <- i.class
} else {
m <- tapply(proj.data,i.class, mean)
sd <- tapply(proj.data,i.class,sd)
sd.sort <- sort.list(sd)
m.list <- sort.list(m)
m.sort <- sort(m)
m.name <- as.numeric(names(m.sort))
G <- length(m)
dist <- 0
split <- 0
for (i in 1:(G-1)) {
if (m[m.list[i+1]] - m[m.list[i]] > dist) {
split <- i
dist <- m[m.list[i+1]] - m[m.list[i]]
}
}
class <- rep(0, n)
for (i in 1:split) class <- class+(i.class == m.name[i])
class <- 2 - class
##
## 1st node - 2st projection
##
g <- table(class)
g.name <- as.numeric(names(g))
G <- length(g)
n <- nrow(i.data)
a <- PP.optimize.anneal(PPmethod, 1, i.data, i.class, std=TRUE,
cooling, temp, energy, r,
lambda)
if (sign != sign(a$proj.best[index])) a$proj.best <- -a$proj.best
proj.data <- as.matrix(i.data) %*% a$proj.best
}
## proj.data<-(proj.data-mean(proj.data))
m.LR <- tapply(proj.data, class, mean)
m.LR.sort <- sort(m.LR)
LR.name <- as.numeric(names(m.LR.sort))
var.LR <- tapply(proj.data, class, var)
median.LR <- tapply(proj.data, class, median)
n.LR <- table(class)
n.name <- as.numeric(names(n.LR))
var.T <- sum(var.LR * n.LR) / sum(n.LR)
if (LR.name[1] != n.name[1]) {
temp <- n.LR[1]
n.LR[1] <- n.LR[2]
n.LR[2] <- temp
}
## c1<-mean(proj.data)
c1 <- (m.LR[1] + m.LR[2]) / 2
c2 <- (m.LR[1] * n.LR[1] + m.LR[2] * n.LR[2]) / sum(n.LR)
max.LR <- tapply(proj.data, class, max)
min.LR <- tapply(proj.data, class, min)
c3 <- sum(min.LR[2] + max.LR[1]) / 2
c4 <- (min.LR[2] * n.LR[2] + max.LR[1] * n.LR[1]) / sum(n.LR)
C <- c(c1, c2, c3, c4)
Index<-a$index.best
Alpha <- t(a$proj.best)
IOindexR <- NULL
IOindexL <- NULL
sort.LR <- as.numeric(names(sort(m.LR)))
IOindexL <- class == sort.LR[1]
IOindexR <- class == sort.LR[2]
list(Index=Index,Alpha=Alpha, C=C, IOindexL=IOindexL, IOindexR=IOindexR)
}
##################
Tree.construct <- function(i.class, i.data, Tree.Struct, id, rep, rep1,
rep2, Alpha.Keep, C.Keep, PPmethod, r=NULL,
lambda = NULL, ...) {
i.class <- as.integer(i.class)
n <- nrow(i.data)
g <- table(i.class)
G <- length(g)
if (length(Tree.Struct) == 0) {
Tree.Struct <- matrix(1:(2*G - 1), ncol=1)
Tree.Struct <- cbind(Tree.Struct, 0, 0, 0,0)
}
if (G == 1) {
## Tree.Struct<-rbind(Tree.Struct,c(rep,0,as.numeric(names(g)),0))
## rep<-rep+1
Tree.Struct[id,3] <- as.numeric(names(g))
list(Tree.Struct=Tree.Struct, Alpha.Keep=Alpha.Keep,
C.Keep=C.Keep, rep=rep, rep1=rep1, rep2=rep2)
} else {
## Tree.Struct<-rbind(Tree.Struct,c(rep,rep1,(rep1+1),rep2))
## rep<-rep+1;rep1<-rep1+2;rep2<-rep2+1;
Tree.Struct[id, 2] <- rep1
rep1 <- rep1 + 1
Tree.Struct[id, 3] <- rep1
rep1 <- rep1 + 1;
Tree.Struct[id, 4] <- rep2
rep2 <- rep2 + 1;
a <- Find.proj(i.class, i.data, PPmethod, r, lambda)
C.Keep <- rbind(C.Keep, a$C)
Tree.Struct[id, 5] <- a$Index
Alpha.Keep <- rbind(Alpha.Keep, a$Alpha)
t.class <- i.class
t.data <- i.data
t.class <- t.class * a$IOindexL
t.n <- length(t.class[t.class == 0])
t.index <- sort.list(t.class)
t.index <- sort(t.index[-(1:t.n)])
t.class <- t.class[t.index]
t.data <- i.data[t.index, ]
b <- Tree.construct(t.class, t.data, Tree.Struct,
Tree.Struct[id, 2], rep, rep1, rep2,
Alpha.Keep, C.Keep, PPmethod, r, lambda)
Tree.Struct <- b$Tree.Struct
Alpha.Keep <- b$Alpha.Keep
C.Keep <- b$C.Keep
rep <- b$rep
rep1 <- b$rep1
rep2 <- b$rep2
t.class <- i.class
t.data <- i.data
t.class <- (t.class * a$IOindexR)
t.n <- length(t.class[t.class == 0])
t.index <- sort.list(t.class)
t.index <- sort(t.index[-(1:t.n)])
t.class <- t.class[t.index]
t.data <- i.data[t.index,]
n <- nrow(t.data)
G <- length(table(t.class))
b <- Tree.construct(t.class, t.data, Tree.Struct,
Tree.Struct[id, 3], rep, rep1, rep2,
Alpha.Keep, C.Keep, PPmethod, r, lambda)
Tree.Struct <- b$Tree.Struct
Alpha.Keep <- b$Alpha.Keep
C.Keep <- b$C.Keep
rep <- b$rep
rep1 <- b$rep1
rep2 <- b$rep2
}
list(Tree.Struct=Tree.Struct, Alpha.Keep=Alpha.Keep,C.Keep=C.Keep,
rep=rep, rep1=rep1, rep2=rep2)
}
##############
C.Keep <- NULL
Alpha.Keep <- NULL
Tree.Struct <- NULL
id <- 1
rep1 <- 2
rep2 <- 1
rep <- 1
if (PPmethod =="LDA" && weight) method <- 1
else if (PPmethod =="LDA" && !weight) method <- 2
else if (PPmethod == "Lp") method <- 3
else if(PPmethod == "Gini") method <- 4
else if(PPmethod == "Ent") method <- 5
else if(PPmethod == "PDA") method <- 6
else stop("Wrong PPmethod")
Tree.final <- Tree.construct(i.class, i.data, Tree.Struct, id, rep,
rep1, rep2, Alpha.Keep, C.Keep, PPmethod,
r, lambda)
Tree.Struct <- Tree.final$Tree.Struct
Alpha.Keep <- Tree.final$Alpha.Keep
C.Keep <- Tree.final$C.Keep
list(Tree.Struct=Tree.Struct, Alpha.Keep=Alpha.Keep, C.Keep=C.Keep)
}
##########################################################
## Initial Value : id,rep<-1
## test.class<-(0,0,0,0,...,0)
## IOindex<-(1,1,1,1,...,1)
##########################################################
PP.classify <- function(test.data, true.class, Tree.result, Rule, ...) {
test.data<-as.matrix(test.data)
true.class<-as.matrix(true.class);
if(nrow(true.class)==1) true.class<-t(true.class)
## test.data<-apply(test.data,2,function(x){(x-mean(x))/sd(x)})
if (!is.numeric(true.class)) {
class.name<-names(table(true.class))
temp<-rep(0,nrow(true.class))
for(i in 1:length(class.name))
temp<-temp+(true.class==class.name[i])*i
true.class<-temp
}
#############
PP.Classification <- function(Tree.Struct, test.class.index, IOindex,
test.class, id, rep) {
if (Tree.Struct[id,4] == 0) {
i.class <- test.class
i.class[i.class > 0] <- 1
i.class <- 1 - i.class
test.class <- test.class + IOindex * i.class * Tree.Struct[id, 3]
return(list(test.class=test.class, rep=rep))
} else {
IOindexL <- IOindex * test.class.index[rep,]
IOindexR <- IOindex * (1 - test.class.index[rep,])
rep <- rep + 1
a <- PP.Classification(Tree.Struct, test.class.index, IOindexL,
test.class, Tree.Struct[id,2], rep)
test.class <- a$test.class
rep <- a$rep;
a <- PP.Classification(Tree.Struct, test.class.index, IOindexR,
test.class, Tree.Struct[id,3], rep)
test.class <- a$test.class
rep <- a$rep
}
list(test.class=test.class, rep=rep)
}
##############
PP.Class.index <- function(class.temp, test.class.index, test.data,
Tree.Struct, Alpha.Keep, C.Keep, id,Rule) {
class.temp <- as.integer(class.temp)
if (Tree.Struct[id,2] == 0) {
return(list(test.class.index=test.class.index,
class.temp=class.temp))
} else {
t.class <- class.temp
t.n <- length(t.class[t.class == 0])
t.index <- sort.list(t.class)
if (t.n) t.index <- sort(t.index[-(1:t.n)])
t.data <- test.data[t.index,]
id.proj <- Tree.Struct[id,4]
proj.test <- as.matrix(test.data) %*%
as.matrix(Alpha.Keep[id.proj,])
## proj.test<-(proj.test-mean(proj.test))
proj.test <- as.real(proj.test)
class.temp <- t(proj.test < C.Keep[id.proj,Rule])
test.class.index <- rbind(test.class.index, class.temp)
a <- PP.Class.index(class.temp, test.class.index, test.data,
Tree.Struct, Alpha.Keep, C.Keep,
Tree.Struct[id,2], Rule)
test.class.index <- a$test.class.index
a<-PP.Class.index(1 - class.temp, test.class.index, test.data,
Tree.Struct, Alpha.Keep, C.Keep,
Tree.Struct[id,3], Rule)
test.class.index <- a$test.class.index;
}
list(test.class.index=test.class.index, class.temp=class.temp)
}
#############
n <- nrow(test.data)
class.temp <- rep(1, n)
test.class.index <- NULL
temp <- PP.Class.index(class.temp, test.class.index, test.data,
Tree.result$Tree.Struct, Tree.result$Alpha.Keep,
Tree.result$C.Keep, 1, Rule)
test.class <- rep(0, n)
IOindex <- rep(1, n)
rep <- 1
temp <- PP.Classification(Tree.result$Tree.Struct, temp$test.class.index,
IOindex, test.class, 1, 1)
predict.error <- sum(true.class != temp$test.class)
predict.class <- temp$test.class
list(predict.error=predict.error, predict.class=predict.class)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.