simulations/Table1_SimSetup.R

###########################################################
# Simulation setup for Table 1 ----------------------------
# Errors in binary outcome, binary covariate --------------
###########################################################

set.seed(918)

# Set sample sizes ----------------------------------------
N <- 1000 # Phase-I = N
n <- 250 # Phase-II/audit size = n

# Generate true values Y, Xb, Xa --------------------------
Xa <- rbinom(n = N, size = 1, prob = 0.25)
Xb <- rbinom(n = N, size = 1, prob = 0.5)
Y <- rbinom(n = N, size = 1,prob = (1 + exp(-(- 0.65 - 0.2 * Xb - 0.1 * Xa))) ^ (- 1))

# Generate error-prone Xb* from error model P(Xb*|Xb,Xa) --
sensX <- specX <- 0.75
delta0 <- - log(specX / (1 - specX))
delta1 <- - delta0 - log((1 - sensX) / sensX)
Xbstar <- rbinom(n = N, size = 1,
                 prob = (1 + exp(- (delta0 + delta1 * Xb + 0.5 * Xa))) ^ (- 1))

# Generate error-prone Y* from error model P(Y*|Xb*,Y,Xb,Xa)
sensY <- 0.95
specY <- 0.90
theta0 <- - log(specY / (1 - specY))
theta1 <- - theta0 - log((1 - sensY) / sensY)
Ystar <- rbinom(n = N, size = 1,
                prob = (1 + exp(- (theta0 - 0.2 * Xbstar + theta1 * Y - 0.2 * Xb - 0.1 * Xa))) ^ (- 1))

# Choose audit design: SRS or -----------------------------
## Naive case-control: case-control based on Y^* ----------
audit <- "SRS" #or "Naive case-control"

# Draw audit of size n based on design --------------------
## V is a TRUE/FALSE vector where TRUE = validated --------
if(audit == "SRS")
{
    V <- seq(1, N) %in% sample(x = seq(1, N), size = n, replace = FALSE)
}
if(audit == "Naive case-control")
{
    V <- seq(1, N) %in% c(sample(x = which(Ystar == 0), size = 0.5 * n, replace = FALSE),
                          sample(x = which(Ystar == 1), size = 0.5 * n, replace = FALSE))
}

# Build dataset --------------------------------------------
sdat <- cbind(Y, Xb, Ystar, Xbstar, Xa, V)
# Make Phase-II variables Y, Xb NA for unaudited subjects ---
sdat[!V, c("Y", "Xb")] <- NA

# Fit models -----------------------------------------------
## (1) Naive model -----------------------------------------
naive <- glm(Ystar ~ Xbstar + Xa, family = "binomial", data = data.frame(sdat))
beta_naive <- naive$coefficients[2]
se_naive <- sqrt(diag(vcov(naive)))[2]

## (2) Complete case model ---------------------------------
cc <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial")
beta_cc <- cc$coefficients[2]
se_cc <- sqrt(diag(vcov(cc)))[2]

## (3) Horvitz-Thompson (HT) estimator ---------------------
## Note: if audit = "SRS", then CC = HT --------------------
if (audit == "Naive case-control") {
  library(sandwich)
  sample_wts <- ifelse(Ystar[V] == 0, 1 / ((0.5 * n) / (table(Ystar)[1])), 1 / ((0.5 * n) / (table(Ystar)[2])))
  ht <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial",
            weights = sample_wts)
  beta_ht <- ht$coefficients[2]
  se_ht <- sqrt(diag(sandwich(ht)))[2]
}

## (4) Generalized raking ----------------------------------
### Influence function for logistic regression
### Taken from: https://github.com/T0ngChen/multiwave/blob/master/sim.r
inf.fun <- function(fit) {
  dm <- model.matrix(fit)
  Ihat <- (t(dm) %*% (dm * fit$fitted.values * (1 - fit$fitted.values))) / nrow(dm)
  ## influence function
  infl <- (dm * resid(fit, type = "response")) %*% solve(Ihat)
  infl
}

naive_infl <- inf.fun(naive) # error-prone influence functions based on naive model
colnames(naive_infl) <- paste0("if", 1:3)

# Add naive influence functions to sdat -----------------------------------------------
sdat <- cbind(id = 1:N, sdat, naive_infl)
library(survey)
if (audit == "SRS") {
  sstudy <- twophase(id = list(~id, ~id),
                     data = data.frame(sdat),
                     subset = ~V)
} else if (audit == "Naive case-control") {
  sstudy <- twophase(id = list(~id, ~id),
                     data = data.frame(sdat),
                     strat = list(NULL, ~Ystar),
                     subset = ~V)
}

# Calibrate raking weights to the sum of the naive influence functions ----------------
scal <- calibrate(sstudy, ~ if1 + if2 + if3, phase = 2, calfun = "raking")
# Fit analysis model using calibrated weights -----------------------------------------
rake <- svyglm(Y ~ Xb + Xa, family = "binomial", design = scal)
beta_rake <- rake$coefficients[2]
se_rake <- sqrt(diag(vcov(rake)))[2]

## (5) MLE -------------------------------------------------
### Script: two-phase log-likelihood specification adapted from Tang et al. (2015)
### Get the script here https://github.com/sarahlotspeich/logreg2ph/blob/master/simulations/Tang_twophase_loglik_binaryX.R

## TODO: Should we really include this function in the CombinedReg package?

# source("simulations/Tang_twophase_loglik_binaryX.R")
# fit_Tang <- nlm(f = Tang_twophase_loglik,
#                 p = rep(0, 12),
#                 hessian = TRUE,
#                 Val = "V",
#                 Y_unval = "Ystar",
#                 Y_val="Y",
#                 X_unval = "Xbstar",
#                 X_val = "Xb",
#                 C = "Xa",
#                 data = sdat)
# beta_mle <- fit_Tang$estimate[10]
# se_mle <- sqrt(diag(solve(fit_Tang$hessian)))[10]

## (6) SMLE ------------------------------------------------
### Construct B-spline basis -------------------------------
### Since Xb* and Xa are both binary, reduces to indicators --
nsieve <- 4
B <- matrix(0, nrow = N, ncol = nsieve)
B[which(Xa == 0 & Xbstar == 0), 1] <- 1
B[which(Xa == 0 & Xbstar == 1), 2] <- 1
B[which(Xa == 1 & Xbstar == 0), 3] <- 1
B[which(Xa == 1 & Xbstar == 1), 4] <- 1
colnames(B) <- paste0("bs", seq(1, nsieve))
sdat <- cbind(sdat, B)
smle <- logreg2ph(Y_unval = "Ystar",
                  Y = "Y",
                  X_unval = "Xbstar",
                  X  = "Xb",
                  Z = "Xa",
                  Bspline = colnames(B),
                  data = sdat,
                  noSE = FALSE,
                  MAX_ITER = 1000,
                  TOL = 1E-4)
beta_smle <- smle$Coefficients$Coefficient[2]
se_smle <- smle$Coefficients$SE[2]

# July 16 2021: 0.78 sec
Epic-Doughnut/Combined-Reg documentation built on Dec. 17, 2021, 6:32 p.m.