summary_popsumm<-function(dat,at){
#if summary stats calculations doesn't occur at this timesetp,
#based on popsumm_frequency value, then leave function
if( (at%%dat$param$popsumm_frequency!=0) & (at!=1)){return(dat)}
#time_index is a time vector based on current value
#of "at" and parameter value "popsumm_frequency"
if(at==1)
time_index <- 1
else if(at==dat$param$popsumm_frequency)
time_index <- (at-dat$param$popsumm_frequency+2):at
else
time_index<- (at-dat$param$popsumm_frequency+1):at
#"popsumm_index" is an index for the "popsumm" vectors
#based on value of "at" and paramter "popsumm_frequency"
if(at==1)
popsumm_index <- 1
else
if(dat$param$popsumm_frequency==1)
popsumm_index <- at
else
popsumm_index <- (at/dat$param$popsumm_frequency)+1
#logical vectors and indices helpful to calculate summary stats
inf_index <- dat$pop$Status == 1
total_inf <- length(which(inf_index))
sus_index <- dat$pop$Status == 0
care_index <- dat$pop$eligible_care == 1
male_index <- dat$pop$sex == "m" & dat$pop$Status >= 0
female_index <- dat$pop$sex == "f" & dat$pop$Status >= 0
inf_male_index <- dat$pop$sex == "m" & inf_index
inf_female_index <- dat$pop$sex == "f" & inf_index
treated_inf_male_index <- dat$pop$sex == "m" & inf_index & dat$pop$treated == 1
treated_inf_female_index <- dat$pop$sex == "f" & inf_index & dat$pop$treated == 1
alive_index <- inf_index | sus_index
total_alive <- length(which(alive_index))
treated_index <- dat$pop$treated == 1 & inf_index
not_treated_index <- dat$pop$treated == 0 & inf_index
treated_undetectable <- treated_index & dat$pop$V<dat$param$vl_undetectable
treated_agents <- which(treated_index)
not_treated_agents <- which(not_treated_index)
no_females_alive <- length(which(female_index & alive_index))
no_males_alive <- length(which(male_index & alive_index))
circum_prev <- length(which(male_index & dat$pop$circum == 1))/no_males_alive
under30_index <- dat$pop$age < 30 & dat$pop$Status >= 0
inf_under30_index <- dat$pop$age < 30 & inf_index
treated_inf_under30_index <- dat$pop$age < 30 & inf_index & dat$pop$treated == 1
agents30to50_index <- dat$pop$age >= 30 & dat$pop$age < 50 & dat$pop$Status >= 0 # Testing need to change 31 back to 50
inf_agents30to50_index <- dat$pop$age >= 30 & dat$pop$age < 50 & inf_index
treated_inf_agents30to50_index <- dat$pop$age >= 30 & dat$pop$age < 50 & inf_index & dat$pop$treated == 1
over50_index <- dat$pop$age >= 50 & dat$pop$Status >= 0
inf_over50_index <- dat$pop$age >= 50 & inf_index
treated_inf_over50_index <- dat$pop$age >= 50 & inf_index & dat$pop$treated == 1
agents_under30 <- which(under30_index)
agents_30to50 <- which(agents30to50_index)
agents_over50 <- which(over50_index)
# Age vectors to be used in sex- and age-specific prevalence and treatment
age_15to24 <- findInterval(dat$pop$age, c(15,25)) == 1
age_15to49 <- findInterval(dat$pop$age, c(15,50)) == 1
age_25to34 <- findInterval(dat$pop$age, c(25,35)) == 1
age_35plus <- findInterval(dat$pop$age, c(35,100)) == 1
# Prevalence vectors to be used in model fitting
prev_15to24 <- length(which(inf_index & age_15to24))/length(which(alive_index & age_15to24))
prev_15to49 <- length(which(inf_index & age_15to49))/length(which(alive_index & age_15to49))
prev_f_15to24 <- length(which(inf_female_index & age_15to24))/length(which(female_index & age_15to24))
prev_f_15to49 <- length(which(inf_female_index & age_15to49))/length(which(female_index & age_15to49))
prev_m_15to24 <- length(which(inf_male_index & age_15to24))/length(which(male_index & age_15to24))
prev_m_15to49 <- length(which(inf_male_index & age_15to49))/length(which(male_index & age_15to49))
#browser()
# Sex- and age-specific treatment coverage
cd4_elig <- dat$pop$CD4 %in% dat$param$cd4_treatment_threshold | dat$pop$CD4_at_trtmnt %in% dat$param$cd4_treatment_threshold
# Proportion coverage among those eligible by CD4 threshold
prop_trt_elig <- length(which(inf_index & treated_index))/length(which(inf_index & cd4_elig))
prop_f_trt_elig <- length(which(inf_female_index & treated_index))/length(which(inf_female_index & cd4_elig))
prop_m_trt_elig <- length(which(male_index & inf_index & treated_index))/length(which(male_index & inf_index & cd4_elig))
prop_f_15to24_trt_elig <- length(which(inf_female_index & age_15to24 & treated_index))/
length(which(inf_female_index & age_15to24 & cd4_elig))
prop_f_25to34_trt_elig <- length(which(inf_female_index & age_25to34 & treated_index))/
length(which(inf_female_index & age_25to34 & cd4_elig))
prop_f_35plus_trt_elig <- length(which(inf_female_index & age_35plus & treated_index))/
length(which(inf_female_index & age_35plus & cd4_elig))
prop_m_15to24_trt_elig <- length(which(inf_male_index & age_15to24 & treated_index))/
length(which(inf_male_index & age_15to24 & cd4_elig))
prop_m_25to34_trt_elig <- length(which(inf_male_index & age_25to34 & treated_index))/
length(which(inf_male_index & age_25to34 & cd4_elig))
prop_m_35plus_trt_elig <- length(which(inf_male_index & age_35plus & treated_index))/
length(which(inf_male_index & age_35plus & cd4_elig))
# Proportion coverage among all HIV+
prop_trt <- length(which(inf_index & treated_index))/length(which(inf_index))
prop_f_trt <- length(which(inf_female_index & treated_index))/length(which(inf_female_index))
prop_m_trt <- length(which(inf_male_index & treated_index))/length(which(inf_male_index))
prop_f_15to24_trt <- length(which(inf_female_index & age_15to24 & treated_index))/
length(which(inf_female_index & age_15to24))
prop_f_25to34_trt <- length(which(inf_female_index & age_25to34 & treated_index))/
length(which(inf_female_index & age_25to34))
prop_f_35plus_trt <- length(which(inf_female_index & age_35plus & treated_index))/
length(which(inf_female_index & age_35plus))
prop_m_15to24_trt <- length(which(inf_male_index & age_15to24 & treated_index))/
length(which(inf_male_index & age_15to24))
prop_m_25to34_trt <- length(which(inf_male_index & age_25to34 & treated_index))/
length(which(inf_male_index & age_25to34))
prop_m_35plus_trt <- length(which(inf_male_index & age_35plus & treated_index))/
length(which(inf_male_index & age_35plus))
new_infections <- is.element(dat$pop$Time_Inf, time_index)
new_infections_count <- length(which(is.element(dat$pop$Time_Inf, time_index)))
new_infections_virus_vacc_sens_count <- length(which(is.element(dat$pop$Time_Inf, time_index)&
dat$pop$virus_sens_vacc==1))
new_infections_virus_vacc_notsens_count <- length(which(is.element(dat$pop$Time_Inf, time_index)&
dat$pop$virus_sens_vacc==0))
new_infections_virus_drug_sens_count <- length(which(is.element(dat$pop$Time_Inf, time_index)&
dat$pop$virus_sens_drug==1))
new_infections_virus_drug_part_res_count <- length(which(is.element(dat$pop$Time_Inf, time_index)&
dat$pop$virus_part_res_drug==1))
new_infections_virus_drug_3_plus_res_count <- length(which(is.element(dat$pop$Time_Inf, time_index) &
dat$pop$virus_3_plus_drug_muts==1))
new_infections_virus_1_drug_muts <- length(which(is.element(dat$pop$Time_Inf, time_index) &
dat$pop$virus_3_plus_drug_muts==1))
donor_time_inf <- ifelse(new_infections_count>0,
dat$pop$Donors_Total_Time_Inf_At_Trans[new_infections],
NA)
donor_acute_count <- ifelse(!is.na(donor_time_inf),
length(which(donor_time_inf<=dat$param$t_acute)),
NA)
new_births <- is.element(dat$pop$arrival_time, time_index)
cd4_aids <- dat$pop$CD4 == 4
new_diagnoses <- dat$pop$diag_status == 1 & is.element(dat$pop$diag_time,time_index)
acute_phase_vec <- (at-dat$pop$Time_Inf)<dat$param$t_acute
acute_phase <- !is.na(acute_phase_vec) & acute_phase_vec==T
percent_virus_sensitive <- round(100*(length(which(dat$pop$virus_sens_vacc==1 & inf_index))/length(which(inf_index))))
percentVaccinated <- round(100*(length(which(dat$pop$vaccinated == 1 & alive_index))/total_alive))
#deaths
just_died <- is.element(dat$pop$Time_Death,time_index)
died_aids <- dat$pop$Status == -2 & just_died
died_aids_mean_age <- mean(dat$pop$age[died_aids])
died_non_aids <- dat$pop$Status == -1 & just_died
died_non_aids_inf <- died_non_aids & !is.na(dat$pop$V)
died_non_aids_sus <- died_non_aids & is.na(dat$pop$V)
aged_out <- (dat$pop$age>=dat$param$max_age) & just_died
#prep
prop_on_prep <- length(which(alive_index & dat$pop$prep_list == 1))/total_alive
#network statistics
# some of these can't be computed if we are in edgelist mode
# so need to create a network from the edgelist
if(!is.null(dat[['nw']])){
nw <- dat[['nw']]
} else {
nw_summary <- NULL
number_edges <- nrow(dat$el[[1]])
network_size <- attr(dat$el[[1]],'n')
total_nodes <- NULL
netattrs<-attributes(dat$el[[1]])
nw <- as.network.matrix(dat$el[[1]], matrix.type='edgelist',
# TODO: ASSUMING THESE HAVE BEEN HARDCODED UPSTREAM
directed = FALSE,
bipartite = FALSE,
loops = FALSE
)
}
nw_summary <- summary(nw~degree(0:1) + concurrent, at = at)
number_edges <- network.edgecount(nw)
network_size <- network.size(nw)
total_nodes <- sum(nw_summary[1]+nw_summary[2]+nw_summary[3]) # This depends on nw_summary which I blanked out above
#viral load values
log10_vl_values <- log10(dat$pop$V[which(inf_index)]+dat$param$AbsoluteCut)
spvl_untreated_values <- (
dat$pop$LogSetPoint[which(inf_index & not_treated_index)])
# todo: may be a faster way to calculate degree
edges_by_agent <- unname(summary(nw ~ sociality(base = 0),at=at)) #use dat$attr$id for index on dat$pop
edges_untreated <- edges_by_agent[dat$attr$id %in% not_treated_agents ]
edges_treated <- edges_by_agent[dat$attr$id %in% treated_agents]
edges_under30 <- edges_by_agent[dat$attr$id %in% agents_under30]
edges_30to50 <- edges_by_agent[dat$attr$id %in% agents_30to50]
edges_over50 <- edges_by_agent[dat$attr$id %in% agents_over50]
#aim3 mutations
inf_undetect_ix <- (dat$pop$Status==1 & dat$pop$V> dat$param$vl_undetectable)
no_inf_undect <- length(which(inf_undetect_ix))
mutations0 <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts==0))
mutations1 <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts>=1))
mutations2 <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts>=2))
mutations3 <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts>=3))
mutations4 <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts>=4))
mutations5 <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts>=5))
mutations1exact <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts==1))
mutations2exact <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts==2))
mutations3exact <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts==3))
mutations4exact <- length(which(inf_undetect_ix & dat$pop$aim3_no_muts==4))
mutations3plus_long <- length(which(inf_index & dat$pop$aim3_muations_long>=3))
mutations4plus_long <- length(which(inf_index & dat$pop$aim3_muations_long>=4))
mutations5_long <- length(which(inf_index & dat$pop$aim3_muations_long==5))
mutations0all <- length(which( dat$pop$aim3_no_muts==0))
mutations1all <- length(which( dat$pop$aim3_no_muts==1))
mutations2all <- length(which( dat$pop$aim3_no_muts==2))
mutations3all <- length(which(dat$pop$aim3_no_muts==3))
mutations4all <- length(which(dat$pop$aim3_no_muts==4))
mutations5all <- length(which(dat$pop$aim3_no_muts==5))
mutations1plusall <- length(which( dat$pop$aim3_no_muts>=1))
mutations2plusall <- length(which( dat$pop$aim3_no_muts>=2))
mutations3plusall <- length(which(dat$pop$aim3_no_muts>=3))
mutations4plusall <- length(which(dat$pop$aim3_no_muts>=4))
#coital acts
if(!is.null(dat$discord_coital_df)){
number_coit_acts <- sum(tapply(dat$discord_coital_df$act_id_couple,
dat$discord_coital_df$couple_id,
max))
acts_iev <- length(which(dat$discord_coital_df$iev==1))/2
percent_iev <- (acts_iev / number_coit_acts)
transmission_opps_condom_percent <- (length(which(dat$discord_coital_df$condom==1)) /
nrow(dat$discord_coital_df) )
trans_probs_mean <- mean(dat$discord_coital_df$trans_probs)
}else{
number_coit_acts <- 0
percent_iev <- NA
percent_condom <- NA
trans_probs_mean <- NA
transmission_opps_condom_percent <- NA
}
#---------------------------------------------
# stats calculated for every run
dat$popsumm$timestep[popsumm_index]<- at
dat$popsumm$prevalence[popsumm_index]<-length(which(inf_index))/length(which(alive_index))
dat$popsumm$new_infections[popsumm_index]<-new_infections_count
dat$popsumm$susceptibles[popsumm_index]<-length(which(sus_index))
dat$popsumm$total_infections_alive[popsumm_index]<-length(which(inf_index))
dat$popsumm$births[popsumm_index]<-length(which(new_births))
dat$popsumm$aids_deaths[popsumm_index]<-length(which(died_aids))
dat$popsumm$natural_deaths[popsumm_index]<-length(which(died_non_aids))
dat$popsumm$aged_out[popsumm_index]<-length(which(aged_out))
dat$popsumm$natural_deaths_infecteds[popsumm_index]<-length(which(died_non_aids_inf))
dat$popsumm$natural_deaths_susceptibles[popsumm_index]<-length(which(died_non_aids_sus))
dat$popsumm$alive[popsumm_index]<-length(which(alive_index))
dat$popsumm$no_in_aids_gamma[popsumm_index]<-length(which((at > (dat$pop$Time_Inf +
dat$pop$RandomTimeToAIDS))&
inf_index))
dat$popsumm$no_in_aids_cd4[popsumm_index]<-length(which(cd4_aids & inf_index ))
dat$popsumm$natural_deaths_infecteds[popsumm_index]<-length(which(died_non_aids_inf))
dat$popsumm$natural_deaths_susceptibles[popsumm_index]<-length(which(died_non_aids_sus ))
dat$popsumm$new_diagnoses[popsumm_index]<-length(which(new_diagnoses))
dat$popsumm$percent_donor_acute[popsumm_index]<- donor_acute_count/length(which(new_infections))
dat$popsumm$mean_time_donor_infected_incident[popsumm_index] <- mean(dat$pop$Donors_Total_Time_Inf_At_Trans[which(new_infections)])
dat$popsumm$mean_age_incident[popsumm_index] <- mean(dat$pop$age[which(new_infections)])
dat$popsumm$mean_age_died_AIDS[popsumm_index]<- mean(dat$pop$age[which(died_aids)])
dat$popsumm$mean_spvl_pop_all[popsumm_index]<- mean(dat$pop$LogSetPoint[which(inf_index)])
dat$popsumm$mean_vl_pop_all[popsumm_index]<-mean(log10_vl_values)
dat$popsumm$mean_spvl_incident[popsumm_index]<-mean(dat$pop$LogSetPoint[which(new_infections)])
dat$popsumm$mean_age_infecteds[popsumm_index]<- mean(dat$pop$age[which(inf_index)])
dat$popsumm$mean_age_susceptibles[popsumm_index]<- mean(dat$pop$age[which(sus_index)])
dat$popsumm$mean_trans_prob[popsumm_index]<- trans_probs_mean
dat$popsumm$no_edges[popsumm_index]<- number_edges
dat$popsumm$mean_degree[popsumm_index]<- number_edges*2/network_size
dat$popsumm$mean_degree_inf_untreated[popsumm_index]<- sum(edges_untreated)/length(not_treated_agents)
dat$popsumm$mean_spvl_pop_untreated[popsumm_index]<- mean(spvl_untreated_values)
dat$popsumm$total_infections_not_treated[popsumm_index] <-length(which(inf_index & not_treated_index))
dat$popsumm$cd4_gt_350[popsumm_index] <- length(which(inf_index & !treated_index & (dat$pop$CD4 == 1 | dat$pop$CD4 == 2)))
dat$popsumm$cd4_200_350[popsumm_index] <- length(which(inf_index & !treated_index & dat$pop$CD4 == 3))
dat$popsumm$cd4_0_200[popsumm_index] <- length(which(inf_index & !treated_index & dat$pop$CD4 == 4))
#--------------------------------------------
#network
dat$popsumm$prop_nodes_degree_0[popsumm_index]<- nw_summary[1]/total_nodes
dat$popsumm$prop_nodes_degree_1[popsumm_index]<- nw_summary[2]/total_nodes
dat$popsumm$prop_nodes_concurrent[popsumm_index]<- nw_summary[3]/total_nodes
dat$popsumm$mean_degree_under_30[popsumm_index]<- {
if (length(agents_under30) > 0) sum(edges_under30)/length(agents_under30)
else NA}
dat$popsumm$mean_degree_30_50[popsumm_index]<- {
if (length(agents_30to50) > 0)
sum(edges_30to50)/length(agents_30to50)
else NA}
dat$popsumm$mean_degree_over_50[popsumm_index]<- {
if (length(agents_over50) > 0)
sum(edges_over50)/length(agents_over50)
else NA}
#--------------------------------------------
#hetero model
if (dat$param$model_sex=="hetero") {
dat$popsumm$alive_female[popsumm_index]<-no_females_alive
dat$popsumm$alive_male[popsumm_index]<-no_males_alive
dat$popsumm$prev_15to24[popsumm_index] <-prev_15to24
dat$popsumm$prev_15to49[popsumm_index] <-prev_15to49
dat$popsumm$prev_f_15to24[popsumm_index] <-prev_f_15to24
dat$popsumm$prev_f_15to49[popsumm_index] <-prev_f_15to49
dat$popsumm$prev_m_15to24[popsumm_index] <-prev_m_15to24
dat$popsumm$prev_m_15to49[popsumm_index] <-prev_m_15to49
dat$popsumm$inf_men[popsumm_index]<-length(which(inf_male_index))/length(which(male_index))
dat$popsumm$inf_women[popsumm_index]<-length(which(inf_female_index))/length(which(female_index))
dat$popsumm$inf_under30[popsumm_index]<-length(which(inf_under30_index))/length(which(under30_index))
dat$popsumm$inf_30to50[popsumm_index]<-length(which(inf_agents30to50_index))/length(which(agents30to50_index))
dat$popsumm$inf_over50[popsumm_index]<-length(which(inf_over50_index))/length(which(over50_index))
female_edges <- edges_by_agent[dat$attr$sex == 'f']
tot_grp <- length(female_edges)
if(tot_grp>1){
mean_degree_female <- sum(female_edges)/tot_grp
}else{mean_degree_female <- NA}
dat$popsumm$mean_degree_female[popsumm_index]=mean_degree_female
male_edges <- edges_by_agent[dat$attr$sex == 'm']
tot_grp <- length(male_edges)
if(tot_grp>1){
mean_degree_male <- sum(male_edges)/tot_grp
}else{mean_degree_male <- NA}
dat$popsumm$mean_degree_male[popsumm_index]=mean_degree_male
}
#--------------------------------------------
#treatment (msm and hetero models)
if (dat$param$start_treatment_campaign[1] < 5e5) {
dat$popsumm$no_treated[popsumm_index]<-length(which(inf_index & treated_index))
dat$popsumm$percent_suppressed[popsumm_index]<-(length(which(treated_index &
((at-dat$pop$tx_init_time)>100) &(log10(dat$pop$V)< dat$pop$LogSetPoint/10) &
length(inf_index))) / length(inf_index) )
}
#--------------------------------------------
#hetero model with treatment
if (dat$param$model_sex=="hetero" & dat$param$start_treatment_campaign[1] < 5e5) { #only plot if treatment is available in model
dat$popsumm$treated_inf_men[popsumm_index]<-length(which(treated_inf_male_index))/length(which(inf_male_index))
dat$popsumm$treated_inf_women[popsumm_index]<-length(which(treated_inf_female_index))/length(which(inf_female_index))
dat$popsumm$treated_inf_under30[popsumm_index]<-length(which(treated_inf_under30_index))/length(which(inf_under30_index))
dat$popsumm$treated_inf_30to50[popsumm_index]<-length(which(treated_inf_agents30to50_index))/length(which(inf_agents30to50_index))
dat$popsumm$treated_inf_over50[popsumm_index]<-length(which(treated_inf_over50_index))/length(which(inf_over50_index))
dat$popsumm$no_treated_undetectable[popsumm_index]<-length(which(treated_undetectable))
dat$popsumm$mean_vl_pop_untreated[popsumm_index]<-mean(log10(dat$pop$V[which(inf_index & not_treated_index)]))
dat$popsumm$percent_treated_undetectable[popsumm_index]<- length(which(treated_undetectable))/length(which(treated_index))
dat$popsumm$total_pills_taken[popsumm_index]<- sum(c(0,dat$popsumm$no_treated[1:popsumm_index]),na.rm=T)
dat$popsumm$mean_degree_inf_treated[popsumm_index]<- sum(edges_treated)/length(treated_agents)
}
#--------------------------------------------
#prep
if (dat$param$start_prep_campaign[1] < 5e5) {
dat$popsumm$prop_on_prep[popsumm_index] <-prop_on_prep
}
#--------------------------------------------
#circumcision (?)
if(dat$param$circum_prob != 0.85) {
# plot circumcision prevalence if not at default
dat$popsumm$circum_prev[popsumm_index] <-circum_prev
}
#--------------------------------------------
#vaccine
if (dat$param$perc_vaccinated != 0.5) { #only plot if vaccine campaign in model
dat$popsumm$new_infections_vacc_sens_virus[popsumm_index]<- new_infections_virus_vacc_sens_count
dat$popsumm$new_infections_vacc_resist_virus[popsumm_index]<- new_infections_virus_vacc_notsens_count
dat$popsumm$percent_virus_sensitive_vacc[popsumm_index]<- percent_virus_sensitive
dat$popsumm$percentAliveVaccinated[popsumm_index]<- percentVaccinated
}
if(dat$param$VL_Function=="aim3"){
dat$popsumm$total_new_infections[popsumm_index]<- sum(c(0,dat$popsumm$new_infections[1:popsumm_index]))
dat$popsumm$new_infections_drug_sens_virus[popsumm_index]<- new_infections_virus_drug_sens_count
dat$popsumm$new_infections_drug_part_res_virus[popsumm_index]<- new_infections_virus_drug_part_res_count
dat$popsumm$new_infections_drug_3_plus_res_virus[popsumm_index]<- new_infections_virus_drug_3_plus_res_count
dat$popsumm$mean_PPP_incident[popsumm_index]<- mean(dat$pop$PPP[which(new_infections)])
dat$popsumm$mean_PPP_infected[popsumm_index]<- mean(dat$pop$PPP[which(inf_index)])
dat$popsumm$"drug_muts_1+"[popsumm_index]<- mutations1
dat$popsumm$"drug_muts_3+"[popsumm_index]<- mutations1
dat$popsumm$"total_1+_drug_muts"[popsumm_index]<- {
sum(c(0,dat$popsumm[["new_infections_virus_1_drug_muts"]][1:popsumm_index]))}
dat$popsumm$"total_3+_drug_muts"[popsumm_index]<- {
sum(c(0,dat$popsumm[["new_infections_virus_drug_3_plus_res_count"]][1:popsumm_index]))}
dat$popsumm$Perc_0_drug_muts[popsumm_index]<- mutations0/no_inf_undect
dat$popsumm$"Perc_1+_drug_muts"[popsumm_index]<- mutations1/no_inf_undect
dat$popsumm$"Perc_2+_drug_muts"[popsumm_index]<- mutations2/no_inf_undect
dat$popsumm$"Perc_3+_drug_muts"[popsumm_index]<- mutations3/no_inf_undect
dat$popsumm$"Perc_4+_drug_muts"[popsumm_index]<- mutations4/no_inf_undect
dat$popsumm$Perc_All_5_drug_muts[popsumm_index]<- mutations5/no_inf_undect
dat$popsumm$Perc_1_drug_muts[popsumm_index]<- mutations1exact/no_inf_undect
dat$popsumm$Perc_2_drug_muts[popsumm_index]<- mutations2exact/no_inf_undect
dat$popsumm$Perc_3_drug_muts[popsumm_index]<- mutations3exact/no_inf_undect
dat$popsumm$Perc_4_drug_muts[popsumm_index]<- mutations4exact/no_inf_undect
#not graphed/overlay only
dat$popsumm$Perc_1_drug_muts_total_pop[popsumm_index]<- mutations1all/total_alive
#not graphed/overlay only
dat$popsumm$Perc_2_drug_muts_total_pop[popsumm_index]<- mutations2all/total_alive
#not graphed/overlay only
dat$popsumm$Perc_3_drug_muts_total_pop[popsumm_index]<- mutations3all/total_alive
dat$popsumm$Perc_4_drug_muts_total_pop[popsumm_index]<- mutations4all/total_alive
dat$popsumm$Perc_0_drug_muts_total_pop[popsumm_index]<- mutations0all/total_alive
dat$popsumm$"Perc_1+_drug_muts_total_pop"[popsumm_index]<- mutations1plusall/total_alive
dat$popsumm$"Perc_2+_drug_muts_total_pop"[popsumm_index]<- mutations2plusall/total_alive
dat$popsumm$"Perc_3+_drug_muts_total_pop"[popsumm_index]<- mutations3plusall/total_alive
dat$popsumm$"Perc_4+_drug_muts_total_pop"[popsumm_index]<- mutations4plusall/total_alive
dat$popsumm$Perc_All_5_drug_muts_total_pop[popsumm_index]<- mutations5all/total_alive
dat$popsumm$"Perc_3+_drug_muts_long"[popsumm_index]<- mutations3plus_long/total_inf
dat$popsumm$"Perc_4+_drug_muts_long"[popsumm_index]<- mutations4plus_long/total_inf
dat$popsumm$Perc_5_drug_muts_long[popsumm_index]<- mutations5_long/total_inf
}#end of aim3 summary stats
####################################
#calculation of generic attribute stats
#what percent of alive agents are in each category
#stat: generic_att_percent_cat_xx (xx=1,..,total number of attributes)
#what percent of alive agents are infected in each category
#stat: generic_att_percent_inf_cat_xx
#stats for generic attribute values need to be treated separately
#as the number of attributes may vary between model scenarios
#note: objects below need to be renamed for clarity
temp_length <- length(dat$param$generic_nodal_att_values)
if(temp_length>1){
#how many alive agents in each category
temp_table=table(dat$pop$att1[alive_index])
#how many alive and infected agents in each category
temp_table2=table(dat$pop$att1[inf_index])
# How many vaccinated in each category
temp_table3 = table(dat$pop$att1[dat$pop$vaccinated == 1])
#total agents
sum_temp_table=sum(temp_table)
#this vector makes sure categories from tables above are
#arranged in ascending order (necessary if zero agents in a particular
#category, which would mean they are missing in tables above
temp_match=match(names(temp_table),1:temp_length)
for(zz in 1:length(temp_match)){
namevec <- paste("generic_att_percent_cat_",temp_match[zz],sep="")
dat$popsumm[[namevec]][popsumm_index]=temp_table[zz]/sum_temp_table
}
for(zz in 1:temp_length){
namevec2 <- paste("generic_att_percent_inf_cat_",zz,sep="")
ix1<- which(names(temp_table)==zz)
ix2<- which(names(temp_table2)==zz)
if(length(ix2)>0){
val<- temp_table2[ix2]/temp_table[ix1]
}else{val<-0}
dat$popsumm[[namevec2]][popsumm_index] <- val
}
for(zz in 1:temp_length) {
namevec3 <- paste("generic_att_percent_vacc_cat_", zz, sep = "")
ix1 <- which(names(temp_table) == zz)
ix2 <- which(names(temp_table3) == zz)
if(length(ix2) > 0) {
val <- temp_table3[ix2]/temp_table[ix1]
} else { val <- 0 }
dat$popsumm[[namevec3]][popsumm_index] <- val
}
for(zz in 1:length(temp_match)){
namevec <- paste("generic_att_mean_degree_cat_",temp_match[zz],sep="")
risk_group <- which(dat$pop$att1 == temp_match[zz] & dat$pop$Status >=0)
edges <- edges_by_agent[dat$attr$id %in% risk_group]
tot_grp <- length(risk_group)
if(tot_grp>1){
mean_degree_group <- sum(edges)/tot_grp
}else{mean_degree_group <- NA}
dat$popsumm[[namevec]][popsumm_index]=mean_degree_group
}
}
# end of calculating summary stats for generic attributes
#################################################
return(dat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.