FLCNA | R Documentation |
Simultaneous CNA detection and subclone identification using single cell DNA sequencing data.
FLCNA(
tuning = NULL,
K = NULL,
lambda = c(5),
Y,
N = 100,
kms.iter = 100,
kms.nstart = 100,
adapt.kms = FALSE,
eps.diff = 1e-05,
eps.em = 1e-05,
iter.LQA = 20,
eps.LQA = 1e-05,
cutoff = 0.5,
L = 100,
model.crit = "bic"
)
tuning |
A 2-dimensional vector or a matrix with 2 columns, the first column is the number of clusters |
K |
The number of clusters |
lambda |
The tuning parameter |
Y |
A p-dimensional data matrix. Each row is an observation. |
N |
The maximum number of iterations in the EM algorithm. The default value is 100. |
kms.iter |
The maximum number of iterations in kmeans algorithm for generating the starting value for the EM algorithm. |
kms.nstart |
The number of starting values in K-means. |
adapt.kms |
A indicator of using the cluster means estimated by K-means to calculate the adaptive parameters. The default value is FALSE. |
eps.diff |
The lower bound of pairwise difference of two mean values. Any value lower than it is treated as 0. |
eps.em |
The lower bound for the stopping criterion in the EM algorithm. |
iter.LQA |
The number of iterations in the estimation of cluster means by using the local quadratic approximation (LQA). |
eps.LQA |
The lower bound for the stopping criterion in the estimation of cluster means. |
cutoff |
Cutoff value to further control the number of CNAs besed on mean matrix from FL model. Larger cutoff value, less CNAs. |
L |
Repeat times in the EM algorithm while outputing CNA data, defaults to 100. |
model.crit |
The criterion used to select the number of clusters |
This function returns the esimated parameters and some statistics of the optimal model within the given K
and \lambda
, which is selected by BIC when model.crit = 'bic'
or GIC when model.crit = 'gic'
.
K.best |
The optimal number of clusters. |
mu.hat.best |
The estimated cluster means in the optimal model. |
sigma.hat.best |
The estimated covariance in the optimal model. |
alpha.hat.best |
posterior probabilities in the optimal model. |
p.hat.best |
The estimated cluster proportions in the optimal model. |
s.hat.best |
The clustering assignments using the optimal model. |
lambda.best |
The value of tuning hyperparameter lambda that provide the optimal model. |
gic.best |
The GIC of the optimal model. |
bic.best |
The BIC of the optimal model. |
llh.best |
The log-likelihood of the optimal model. |
ct.mu.best |
The degrees of freedom in the cluster means of the optimal model. |
K |
The input k values. |
lambda |
The input lambda values. |
mu.hat |
The estimated cluster means for each parameter combination. |
sigma.hat |
The estimated covariance for each parameter combination. |
p.hat |
The estimated cluster proportions for each parameter combination. |
s.hat = s.hat |
The clustering assignments for each parameter combination. |
gic |
The GIC values for each parameter combination. |
bic |
The BIC values for each parameter combination. |
llh |
The log-likelihood values for each parameter combination. |
ct.mu |
The degrees of freedom in the cluster means for each parameter combination. |
Y <- matrix(rnorm(10000, 0, 0.5),10, 1000)
output <- FLCNA(K = c(1:2), lambda = c(2,3), Y=Y)
output
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.